Abelian Constructivist Lagrangian


  • J. Chauca 1Aprendanet, Petrópolis, Brazil; Quarks, Petrópolis, Brazil
  • R. Doria Aprendanet, Petrópolis, Brazil; Quarks, Petrópolis, Brazil
  • L.S. Mendes Aprendanet, Petrópolis, Brazil; Quarks, Petrópolis, Brazil




Constructivist lagrangian propiates a diverse approach to field theory. Introduce the set action. Consider fields families under a same symmetry group. The resulting fields set extends the standard atomist field theory to a whole field theory. An associative physics is proposed. The grouping physics. The relationship between the part and the whole is considered. A third quantum type beyond Planck granularity and quantum mechanics wave-particle is obtained. The quantum inserted in the whole. Differentiated energy packets are formed. A quantum system is constituted. The abelian grouping physics is considered. The simplest whole unity. Set action in terms of U(1) symmetry. The correspondent constructivist lagrangian is studied. A new type of individuation called whole quantum is derived.
An abelian quantum system is constituted. The usual atomist gauge symmetry is preserved, but, constructivist properties are generated. Quantum system with own norm is a necessary theoretical argument. More is different, once time said P.W. Anderson. Physics is challenged to make the passage from an isolated particle to a quantum system. A theory to describe the physics of part in the whole. A challenge to be interpreted under gauge symmetry. A symmetry of difference is proposed. Quantum diversities enlarging the meanings of interaction, induction, connectivity. A quantum system is introduced. Its elementarity is identified as a third quantum type. It is called whole quantum or variety. This quantum of a many particles system appears with a new physicality. The corresponding
set action derives antireductionist physical laws under gauge symmetry. Ruled by associativity, set transformation, evolution. Associativitity providing quantum under set, diversity, interdependence, nonlinearity, chance. Set transformations performing a whole determinism with directive conducted by gauge parameter and circumstances under lagrangian free coefficients. Generating a set physics with growth, evolution, emergence, complexity. An evolving quantum transforming their quantum numbers. The abelian constructivist lagrangian is explored. A quantum system assembled by fields families and gauge scalars is performed. It arises an environmental physics. Gauge scalars form substrutures with realities and potentialities. The volume of circumstances for each gauge scalar is calculated. Nonvirtual relationships are derived. Physical entities as masses, charges, coupling constants are expressed under constructivist properties. Functionalities will lead them to a physical behaviour beyond four interactions.


Download data is not yet available.


A. H. Compton, A quantum theory of the scattering of X-rays by light elements, Phys. Rev. 21 (No.5) (1923) 483.

L. De Broglie, Waves and quanta, Nature 112.2815, 540-540 (1923); W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeits, 43(3-4), 172-198, (1927); P. A. M. Dirac, The quantumtheory of the emission and absorption of radiation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114(767), 243-265, (1927). P. Jordan and M. Born, Zur Quantenmechanik. Zeitschrift für Physik, 34(1), 858-888, (1925).

P.A.M. Dirac, The quantum theory of the electron. Proc. of the Roy. Soc. of London. Series A, Containing Papers of a Mathematical and Physical Character 117.778, 610-624, (1928); P.A.M. Dirac, The quantum theory of the electron. Part II. Proc. of the Roy. Soc. of London. Series A, Containing Papers of a Mathematical and Physical Character 118.779, 351-361 (1928).

N. Lambert, M-theory and maximally supersymmetric gauge theories. Annual Review of Nuclear and Particle Science 62, 285-313, (2012).

For a Kaluza-Klein origin see: R.M. Doria and C. Pombo, Two Potentials, One Gauge Group: A Possible Geometrical Interpretation II. Nuov. Cim., (1986); C.M. Doria, R.M. Doria, J. A. Helayël-Neto, A Kaluza-Klein Interpretation of an Extended Gauge Theory, Rev. Bras. Fis., v.17, p.351-359, (1987). For supersymmetric origin see: N. Chair, J. A. Helayël-Neto and A. William Smith, A less constrained (2, 0) super-Yang-Mills model, Phys. Lett. B,233,173, (1989); S.A. Dias, R.M. Doria, J. L. Matheus Valle, A constraint analysis for an N = 112, D

supersymmetric model, Rev. Bras. Fis., 21, 1, (1991); C.M. Doria, R.M. Doria, and F.A.B.R. Carvalho, A superspace origin for an extended Gauge model, Acta Physica Hungarica, v.73, p.51-58, (1993); C.A.S. Almeida, R. M. Doria, Information on the Gauge principle from a (2,0) Supersymmetric Gauge Model Rev. Bras. Fis.,21,3, (1991). - For fibre bundle origin: C. Doria, R.M. Doria, J.A. Helayël, A Fiber Bundle Treatment to a class of Extended Gauge Models, Communications in Theoretical Physics, v.17,p.505-508, (1992). For o-model origin

see: R. M. Doria, J. A. Helayël-Neto and S. Mokhtari, An Extended Gauge Model as a Possible Origin for Nonlinear σ-Models Europhys. Lett., 16(1),23 (1991); R.M. Doria and J.A. Helayël-Neto, A two-gauge field induced CP-model, Rev. Bras. Fis., Vol. 19, n 1 (1989); C. Almeida, J. Chauca, R. Doria, A less-constrained (2,0) Super-Yang-Mills Model the coupling to non-linear σ-models. journal of advances in physics, 20, 209–114, (2022). https://doi.org/10.24297/jap.v20i.9134.

S. Kamefuchi, L. O’ Raifeartaigh, and Abdus Salam, Change of variables and equivalence theorems in quantum field theories, Nuclear Physics, 28(1):529-549, (1961).

J. Domingos, R. M. Doria, and R. Portugal, ω matrix of gereralized gauge model. Acta Physica Hungarica, 73(2):205-2356, (1993); R.M. Doria and J.A. Helayel-Neto, Tensors and invariants in a generalized scalar model, Acta Physica Hungarica, 73(2): 243-256, (1993)

J. Chauca, R. Doria, R. Soares, Four Bosons EM Gauge Invariance and EM Flux, JAP V. 19, pp 281-345, (2021).

R.M. Doria and M. Werneck de Oliveira, Rev. Bras. Fis. Vol. 20, 1 (1990); P. Colatto and R.M. Doria, Rev. Bras. Fis. Vol. 20, 4 (1990).

P.W.Higgs, Broken Symmetries and the masses of gauge bosons, Phys.Rev. Lett. 13, 508-509 (1964).

P.W. Anderson, Plasmons, gauge invariance and mass, Phys. Rev. 130, 439 (1963).

C.N. Yang and R.L. Mills, Isotopic spin conservation and a generalized gauge invariance, Phys. Rev. 95, 631,

(1954); R. Shaw, The Problem of Particle Types and Other Contributions to the Theory of Elementary Particles. PhD thesis, Cambridge, UK, (1955).

C. N. Yang, Selected Papers (1945-1980) of Chen Ning Yang: With Commentary. World Scientific, (2005); G. Hooft, 50 Years of Yang-Mills Theory, World Scientific, (2005).

J. Chauca, R. Doria and W. Soares, On vectorial fields as Lorentz specie. In: AIP Conference Proceedings. American Institute of Physics, p. 371-376, (2012).

J. Chauca, R. Doria, W. Soares, Gauge invariance for a Whole Abelian Model, AIP Conf. Proc. 1483,400-406


C. Darwin, On the origin of species, Oxford University Press, (2008); C. Darwin, and F. B. William ,The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life. New York: AL Burt, (2009).

M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. 125, 1067, (1962); Yu. Ne’eman, Derivation of strong interactions from a gauge invariance, Nucl. Phys. 26, 222, (1961).

T. Dobzhansky, Genetics and the Origin of Species. Columbia University Press: New York, (1937). 177Journal of Advances in Physics Vol 21 (2023) ISSN: 2347-3487 https://rajpub.com/index.php/jap

Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 No.3, 214 (1964); G. Zweig, An SU(3) model for strong interactions symmetry and its breaking, CERN preprint 8182, TH.401, (1964).

J. Chauca, R. Doria, and J.L.M Valle, “On renormalizability of a non-linear abelian gauge model”, Rev. Mex. Fís., vol. 58, no. 2, pp. 152–159, (2012); J. Chauca, R. Doria, JBAP, Vol 2, Iss. 4, 253-264, (2013).

J. Chauca and R. Doria, On spectroscopy for a whole abelian model, AIP Conference Proceedings. American Institute of Physics, p. 407-418, (2012).

R.M. Doria, A New Model for a Non-Linear Electromagnetism with self-interacting photons, JAP, 7(3), 1840-1896, (2015).

J. Chauca and R. Doria, On discrete symmetries for a whole abelian model, AIP Conference Proceedings. American Institute of Physics, p. 419-428, (2012).

G. Luders, On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories, Dan. Mat. Fys. Medd., v. 28, p. 1-17, (1954); W. Pauli, On the conservation of the lepton charge. Il Nuovo Cimento (1955-1965), v. 6, p. 204-215, (1957); J. Schwinger, On gauge invariance and vacuum polarization. Physical Review, v. 82, n. 5, p. 664, (1951).

T.D. Lee, C.N. Yang, Phys. Rev. 106, 254, (1956); C.S. Wu, E. Ambler, R.W. Hayward, D. Huppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957).

H.A. Kramers, Proc. Amast, Akad. Sci., 40, 814, (1937); W. Pauli, Annales de l’ Inst. Henri Poincarè, 6, 137, (1936).

W. H. Furry, A Symmetry Theorem in the Positron Theory, Phys. Rev. 51, 125 (1937).

J. Schwinger, Phys. Rev. 82, 914 (1951); W. Wigner, Nachr. Akad. Wiss., Göttingen, 32, 35, (1932); Group Theory and its applications to Quantum Mechanics of Atomic Spectra, New York: Academic Press (1955); C. Cohen-Tannoudji, M. Jacobs, Le tempe et se fleché (Edited by E. Klein and M. Spiro). Gif-Sur-Yvette: Editions Frontières (1994); R.G. Sachs. The physics of Time Reversal, The Univesity of Chicago Press, Chicago (1987).

E. Noether, Invariance variations problems, Math-Phys klasse 335 (1918); H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, (1928); H. Weyl, Elektron und Gravitation, Zeit. f. Phys. 56, 330 (1929); H. Weyl, Elementary theory of invariants, (1935); H. Cartan, Leçons sur la théorie des spineurs, (1937). me chamar

Peter W. Higgs, Broken symmetries and masses of gauge bosons, Phys. Rev. Lett. 13:508-509, Oct (1964); J. Goldstone, Field theories with superconductor solutions, II Nuovo Cimento, 1955-1965, 19(1):154-164, (1961); F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13:321-323, (1964); G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, Global conservartion laws and massless particles, Phys. Rev. Lett., 13:585-587, (1964); Francois Englert, Nobel lecture: The beh mechanism and its scalar bosons, Rev. Mod. Phys., 86:843-850, (2014).

J. Chauca, R. Doria, W. Soares, Non-linear Abelian Gauge Model, AIP Conf. Proc. 1483, 342-351 (2012). [32] J. Chauca, R. Doria, On whole Abelian model dynamics. In: AIP Conference Proceedings. American Institute of Physics, p. 352-370, (2012).

R. Doria, W. Soares, Four Bosons EM Conservation Laws, JAP, 19, 40-92, (2021).

M. Gell-Mann and F. Low, Quantum Electrodynamics at Small Distances, Phys. Rev. D95 1300 (1954); C. G. Callan, Broken Scale Invariance in Scalar Field Theory, Phys. Rev. D12, 1541 (1970); K. Symanzik, Small Distance Behaviour in Field Theory and Power Counting, Comm. Math. Phys. 18, 27 (1970).

J. Chauca, R. Doria and I. Soares, Four Bosons Electromagnetism, JAP, Vol. 10, 1, 2605 (2015).

R. Doria, J.A. Helayel-Neto, L.S. Mendes, in preparation.

Y. Aharonov, and D. Bohm, Significance of electromagnetic potentials in the quantum theory. Physical Review, 115(3), 485-491, (1959).

Dirac, Paul Adrien Maurice. "The quantum theory of dispersion." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 114.769 (1927): 710-728.; Dirac, Paul Adrien Maurice. "The quantum theory of dispersion." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 114.769 (1927): 710-728.

P. W. Anderson, More is different, Science 177, 393–396 (1972).

R. G. Sharma, A review of theories of superconductivity, Springer Series Materials, vol. 214., (2015).

C.-Y. Hou, C. Chanon and C. Murdry, Electron fractionalization in two-dimensional graphenelike structures, Phys. Rev. Lett. 98, 186809 (2007).

E. F. Talantsev et al., p-wave superconductors in iron-based superconductors, Scientific Reports 9, 14245 (2019).

Cesare Franchini, Michele Reticcioli, Martin Setvin Ulrike Diebold, Polarons in materials, Nature Reviews Materials volume 6, 560, (2021).

A. Rahimi-Iman, Polariton Physics, Springer Series in Optical Sciences, 229 (2020)

Thomas Mueller, Ermin Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors, npj 2D Materials and Applications volume 2, no 29, (2018).

M. Bernardi, First-principles dynamics of electrons and phonons, The European Physical Journal B 89, 1-15 (2016).

F. Wilczek, Quantum Time Crystals, Phys. Rev. Lett. 109 (16), 160401 (2012) arXiv:1202.2539 [quant-ph].

K. von Klitzing, Quantum Hall Effect: Discovery and Application, Annual Review of Condensed Matter Physics, Vol. 8, 13 (2017).

A. Einstein, B. Podolsky, and N. Rosen. "Can quantum-mechanical description of physical reality be considered complete?." Physical review 47, no. 10, 777 (1935).

N. Bohr, Can quantum-mechanical description of physical reality be considered complete?. Physical review, v. 48, n. 8, p. 696, (1935).

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri & P. Grangier, Generation of optical ‘Schrödinger cats’ from photon number states. Nature, 448(7155), 784-786, (2007).

D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I. Physical Review, 85(2), 166-179, (1952)

J. S. Bell, On the Einstein Podolsky Rosen paradox. Physics Physique, 1(3), 195-200, (1964).

S. Leonard, Art. Quantum mechanics: the theoretical minimum. Basic Books, (2014).

On tunneling: Libretexts Physics, https://phys.libretexts.org/Bookshelves/University_Physics/Book, (2023).

R. Horodecki, P. Horodecki, M. Horodecki, & K. Horodecki, Quantum entanglement, Rev. Mod. Phys. (2009).

M. Schlosshauer, Quantum decoherence. Physics Reports, 831, 1-57, (2019).




How to Cite

Chauca, J. ., Doria, R. ., & Mendes, L. . (2023). Abelian Constructivist Lagrangian. JOURNAL OF ADVANCES IN PHYSICS, 21, 139–199. https://doi.org/10.24297/jap.v21i.9530