On the electromagnetic symmetry producing fields charges at four bosons association
DOI:
https://doi.org/10.24297/jap.v21i.9437Keywords:
collective fields strengths, self-interactions photons, Gauge theory studies, Electromagnetism NonlinearAbstract
Physics would like to know what electric charge is. As a matter property it generates EM fields, coupling constant,
conserved current. Nevertheless Maxwell is uncomplete. It requires to be extended. An approach is supported by
electric charge transfer phenomenology. Consider on three flavours charges {+, 0, −} transmission.
A generic electric charge is defined by the triad {+, 0, −}. It provides an exchange charge physics through the
quadruplet {Aμ, Uμ, V ±
μ }. An electromagnetic symmetry is constituted. It associates the four vectorial bosons. The
EM completeness of particles carrying three electric charges is found. A four photons EM is derived. It includes, Aμ as
the usual photon, Uμ massive photon, V
±
μ massive charged photons.
A new electromagnetic physics is expressed through an enlarged abelian symmetry, Uq(1). Maxwell relationships
between charge and fields are extended. Fields charges are more primitive than electric charge. Noether theorem
improves the attributes on electric charge conservation, symmetry equation and constraint. The symmetry equation
which govern the electric charge dynamics shows a charge behaviour beyond matter, as fields flux. EM interaction is
extended from fine structure constant to modulated and neutral charges.
The four bosons electromagnetism introduces a non-univoque electromagnetic symmetry. A pluriformity of EM models
is performed under similar abelian group, Uq(1). Opportunities for different EM models are constituted preserving
charge conservation law and sharing a common Lagrangian. Physical varieties on Noether theorem, fields strengths,
Lagrangian coefficients, equations of motion, fields charges are expressed. Electric charge is englobed by fields charges.
The simplest four bosons model is selected. That one which fields strengths are gauge invariants. Propitiating
measurable granular and collective fields strenghts. Four kinds of charges are expressed through equations of motion.
Electric, modulate, neutral and Bianchi. Allowing to include new EM sectors. Extend Maxwell for nonintegers charges,
nonlinearity, neutral EM, spintronics, weak interactions, photonics. A new EM energy emerges.
Downloads
References
W. Gilbert, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, Peter Short, London, (1600).
P. V. Musschenbroek, Essai de Physique, Vol. 1 (translated by P.Massuet). [S.l.]: Leyden, (1739); Baigrie, B. S.
(2007). Electricity and magnetism: a historical perspective. Greenwood Publishing Group.; Franklin, B. (1753).
Letter to Peter Collinson. May, 9, 1753.
Fujimoto, M. (2007). Physics of classical electromagnetism (Vol. 240). Springer Science & Business Media.
Particle Data Group, et al, Review of particle physics." Progress of Theoretical and Experimental Physics 2020.8
(2020): 083C01. book; HKragh, H. (2020). Quantum generations. In Quantum Generations. Princeton University
Press. DOI: https://doi.org/10.2307/j.ctv10crfmk
Stoney, G. J. (1894). XLIX. Of the “electron,” or atom of electricity: To the editors of the Philosophical
Magazine. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 38(233), 418-
DOI: https://doi.org/10.1080/14786449408620653; J.J. Thomson, J. J. (1897). XL. Cathode rays. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44(269), 293-316. DOI: https:
//doi.org/10.1080/14786449708621070
Faraday, M. (1832). V. Experimental researches in electricity. Philosophical transactions of the Royal Society of
London, (122), 125-162. DOI: https://doi.org/10.1098/rstl.1832.0006; Experimental Researches in Electric-
ity, edited by Taylor and T. Francis, vols I (1839), II (1844), and Vol. III (1855); On The various forces in Nature
(1873).
Maxwell, J. C. (1861). LI. On physical lines of force. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 21(141), 338-348. DOI: https://doi.org/10.1098/rstl.1865.0008;A Maxwell, J. C.
(1864). II. A dynamical theory of the electromagnetic field. Proceedings of the Royal Society of London, (13),
-536.; Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1). Oxford: Clarendon Press.
Millikan, R. A. (1913). On the elementary electrical charge and the Avogadro constant. Physical Review, 2(2), 109.
DOI: https://doi.org/10.1103/PhysRev.2.109
Gies, H., Jaeckel, J., Ringwald, A. (2006). Polarized light propagating in a magnetic field as a probe for millicharged
fermions. Physical review letters, 97(14), 140402. doi:10.1103/PhysRevLett.97.140402; Gies, H., Jaeckel, J.,
Ringwald, A. (2006). Accelerator cavities as a probe of millicharged particles. Europhysics Letters, 76(5), 794.
DOI: 10.1209/epl/i2006-10356-5; Burrage, C., Jaeckel, J., Redondo, J., Ringwald, A. (2009). Late time CMB
anisotropies constrain mini-charged particles. Journal of Cosmology and Astroparticle Physics, 2009(11), 002.
Gell-Mann, M. (1953). Isotopic spin and new unstable particles. Physical Review, 92(3), 833.; Nakano, T.,
Nishijima, K. (1953). Charge Independence for V-particles. Progress of Theoretical Physics, 10(5), 581-582.;
Nishijima, K. (1955). Charge independence theory of V particles. Progress of Theoretical Physics, 13(3), 285-304.
J.A. Helayel-Neto, (2022), https://ava.professorglobal.com.br/mod/resource/view.php?id=7907.
Dirac, P. A. M. (1927). The quantum theory of dispersion. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 114(769), 710-728. DOIhttps://doi.org/10.
/rspa.1927.0039; Fermi, E. (1934). Tentativo di una teoria dei raggi . Il Nuovo Cimento (1924-1942), 11(1),
-19. DOI: https://doi.org/10.1007/BF01351864; Pauli, W., Weisskopf, V. (1934). ’Uber die Quantisierung
der skalaren relativistischen. Helv. Phys. Acta, 7, 708-731.
Gross, D. J. (1995). Oscar Klein and gauge theory. procs.“The Oskar Klein centenary, Stockholm, Sweden, 94-111.;
Klein, O. (1986). On the theory of charged fields. Surveys in High Energy Physics, 5(3), 269-285.
Schwinger, J. (1958). Selected papers on quantum electrodynamics. Courier Corporation.
Lamb Jr, W. E., Retherford, R. C. (1947). Fine structure of the hydrogen atom by a microwave method. Physical
Review, 72(3), 241. DOI: https://doi.org/10.1103/PhysRev.72.241; H. Bethe, Bethe, H. A. (1947). The
electromagnetic shift of energy levels. Physical Review, 72(4), 339. Kusch, P., Foley, H. M. (1948). The magnetic
moment of the electron. Physical Review, 74(3), 250.
London, F. (1930). Zur theorie und systematik der molekularkräfte. Zeitschrift für Physik, 63(3-4), 245-279. DOI:
https://doi.org/10.1103/PhysRev.72.241; Proca, A. L. (1936). Sur la théorie ondulatoire des électrons positifs
et négatifs. Journal de Physique et le Radium, 7(8), 347-353.; Proca, A. (1936a) Comptes Rendus Hebd. Seances
Acad. Sc. Paris, 202, 136; Proca, A. (1936b)Comptes Rendus Hebd. Seances Acad. Sc. Paris, 202, 1490; Proca, A.
(1936c), Comptes Rendus Hebd. Seances Acad. Sc. Paris, 203, 709.
Corben, H. C., Schwinger, J. (1940). The electromagnetic properties of mesotrons. Physical Review, 58(11), 953.
DOI: https://doi.org/10.1103/PhysRev.58.953
Komar, A., Salam, A. (1960). Renormalization problem for vector meson theories. Nuclear Physics, 21, 624-630.
DOI: https://doi.org/10.1016/0029-5582(60)90082-1; Salam, A., Ward, J. C. (1961). On a gauge theory of
elementary interactions. Il Nuovo Cimento (1955-1965), 19, 165-170. DOI: https://doi.org/10.1007/BF02812723;
T. D. Lee and Lee, T. D., Yang, C. N. (1963). Theory of electrical vector mesons interacting with the electromagnetic
fields. Phys. Rev, 130, 1287. DOI: https://doi.org/10.1103/PhysRev.130.1287.
Doria, R. (2015), A new model for a non-linear electromagnetic model with self-interacting photons, JAP, 7 (3),
-1896; J. Chauca, R. Doria, I. Soares, Four Bosons electromagnetism, JAP, 10. DOI: https://doi.org/10.
/jap.v7i3.1579; J. Chauca, R. Doria, I. Soares, (2015), Four Bosons electromagnetism, JAP, Vol 10 no1 2605.
DOI: https://doi.org/10.24297/jap.v10i1.1341; J. Chauca, J., Doria, R. Soares, I. (2017), Electric Charge
transmission through Four Bosons, JAP, 13(i): 4535-4552. DOI: https://doi.org/10.24297/jap.v13i1.5767;
Doria, R. and Soares, I. (2021), Four Bosons EM Conservation Laws, JAP. 19. 40-92. Doria, R. and Soares I. (2021)
Spin-Valued Four Bosons Electrodynamics, JAP, 19. 93-133. DOI: https://doi.org/10.24297/jap.v19i.9030;
Couto M. and Doria, R. (2022). Maxwell to photonics, to appear JAP. https://doi.org/10.24297/jap.v20i.
Chauca, J. Doria, R. Soares, R. (2021), Four Bosons EM Gauge Invariance and EM Flux, JAP V. 19, pp 281-345.
https://doi.org/10.24297/jap.v19i.9054.
Doria, R. and Mendes, L. S. (2022), Electric Charge Mutation by Four Vector Bosons., arXiv:2204.02187; Doria,
R. and Mendes, L. S. (2022) Four-Four Maxwell Equations, arXiv:2205.15782.
Hasert, F. et al. (1973), Observation of neutrino-like interactions without muons or electrons in the Gargamelle-
experiment, Phys. Lett. B46, 138. DOI: https://doi.org/10.1016/0370-2693(73)90499-1.
Gingras, M. J. (2009). Observing monopoles in a magnetic analog of ice. Science, 326(5951), 375-376. DOI:
https://doi.org/10.1126/science.1181510; Diamantini, M. C., Trugenberger, C. A., & Vinokur, V. M. (2021).
Quantum magnetic monopole condensate. Communications Physics, 4(1), 25. arXiv:2007.02356[hep-th].
Kong, L. D., Zhang, S., Zhang, S. N., Ji, L., Doroshenko, V., Santangelo, A., ... & Shui, Q. C. (2022). Insight-HXMT
discovery of the highest-energy CRSF from the first galactic ultraluminous X-ray pulsar swift J0243. 6+ 6124. The
Astrophysical Journal Letters, 933(1), L3. DOI: https://doi.org/10.3847/2041-8213/ac7711
Biermann, L. (1950). Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem An-
hang von A. Schlüter). Zeitschrift Naturforschung Teil A, 5, 65. DOI: https://doi.org/10.1515/zna-1950-0201;
Hoyle, F. (1959), The steady state theory, 1l-ème Conseil de Phys. dl’Inst. Intern. de Physique Solvay, p. 53.
Yu J.Q. et al, (2019), Creation of electron-positron pairs in photon-photon collisions driven by 10-PW LASER
pulses, Phys. Rev. Lett. 122, 014802. DOI: https://doi.org/10.1103/PhysRevLett.122.014802; Gong, C., Li,
Z. L., Xie, B. S., & Li, Y. J. (2020). Electron-positron pair production in frequency modulated laser fields. Physical
Review D, 101(1), 016008. DOI: https://doi.org/10.1103/PhysRevD.101.016008.
Born, M., & Infeld, L. (1934). Foundations of the new field theory. Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character, 144(852), 425-451. DOI: https://doi.
org/10.1098/rspa.1934.0059; Heisenberg, W., & Euler, H. (1936). Folgerungen aus der diracschen theorie des
positrons. Zeitschrift für Physik, 98(11-12), 714-732. DOI: https://doi.org/10.1007/BF01343663.
Fabbrichesi, M., Gabrielli, E., & Lanfranchi, G. (2021). The Physics of the Dark Photon: A Primer. Cham:
Springer. DOI: https://doi.org/10.1007/978-3-030-62519-1; Huang, F. P., & Lee, H. S. (2019). Extension
of the electrodynamics in the presence of the axion and dark photon. International Journal of Modern Physics A,
(03n04), 1950012. DOI: https://doi.org/10.1142/S0217751X1950012X.
Sakurai, J. J. (1982). Nonstandard weak bosons. In Electroweak Interactions (pp. 275-306). Springer Vienna. DOI:
https://doi.org/10.1007/978-3-7091-4031-4_7.
Couto, M., & Doria, R. (2022), Maxwell to Photonics. DOI: https://doi.org/10.24297/jap.v20i.9336.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 R. Doria, L.S. Mendes
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.