Maxwell to Photonics

Authors

  • M. Couto Aprendanet, Petrópolis, Brazil
  • R. Doria Quarks, Petrópolis, 25600, RJ, Brazil

DOI:

https://doi.org/10.24297/jap.v20i.9336

Keywords:

non-linear electromagnetism, fields charges, self-interacting photons, polarization and magnetization origin

Abstract

The main topic to be addressed is the search for a new source of energy: light. Electromagnetism has been the energy that has most changed civilisation in the last two centuries. The emergence of photonics instead of electronics is a new challenge. Photonics is the clean energy to look for.

The 20th century was that of electrons. Several innovations took place through electronics. However, despite these numerous innovations due to the electromagnetic properties of the electron, the 21st century will be that of the photon. The advent of a new generation of innovations arising from the electromagnetic properties of the photon is expected. There is a primordial photon from the light invariance still to be revealed, and a growing photonic market awaiting new properties of the photon. The new perspective lies in discovering electromagnetism where the photon is the own source of electromagnetic fields and self-interacting photons at the tree level are generated.

Our proposal is the four bosons electromagnetism[1] . A model based on charge transfer. An enlargement to Maxwell supported upon a general electric charge triad {+,0,-} and an extension to gauge symmetry for a nonlinear abelian gauge theory[2] . Elementary particle physics shows several reactions interchanging positive, negative and zero charges. It yields a physicality considering the charges set {+,0,-} mediated by four gauge bosons. A quadruplet physics manifested by photon, massive photon and charged photons. A new EM energy is to be explored. Introducing new electromagnetic sectors beyond Maxwell as nonlinear EM, neutral EM, spintronics, weak interaction, and photonics. The basis for photonic engineering.

Downloads

Download data is not yet available.

References

R. Doria, A new model for a non-linear electromagnetic model with selfinteracting photons, JAP,

(3), 1840-1896 (2015);https://doi.org/10.24297/jap.v7i3.1579 J. Chauca, R. Doria, I. Soares, Four

Bosons electromagnetism, JAP, Vol 10 no1 2605 (2015);https://doi.org/10.24297/jap.v10i1.1341 J. Chauca,

R. Doria, I. Soares, Electric Charge transmission through Four Bosons, JAP, 13(i): 4535-4552,

(2017);https://doi.org/10.24297/jap.v13i1.5767 Doria, and I. Soares, Four Bosons EM Conservation Laws, JAP.

40-92. (2021);https://doi.org/10.24297/jap.v19i.9030 R. Doria, and I. Soares, Spin-Valued Four Bosons Electrodynamics,

JAP, 19. 93-133 (2021);https://doi.org/10.24297/jap.v19i.9054 J. Chauca, R. Doria, R. Soares,

Four Bosons EM Gauge Invariance and EM Flux, JAP V. 19, pp 281-345, (2021); R. Doria, and L. S. Mendes.

Electric Charge Mutation by Four Vector Bosons., arXiv:2204.02187 (2022); R. Doria, and L. S. Mendes, Four-Four

Maxwell Equations, arXiv:2205.15782 (2022).

For a Kaluza-Klein origin see: R.M. Doria and C. Pombo, Two Potentials, One Gauge Group: A Possible

Geometrical Interpretation II. Nuov. Cim., (1986); C.M. Doria, R.M. Doria, J. A. Helayël-Neto, A Kaluza-Klein

Interpretation of an Extended Gauge Theory, Rev. Bras. Fis., v.17, p.351-359, (1987). For supersymmetric origin

see: N. Chair, J. A. Helayël-Neto and A. William Smith, A less constrained (2, 0) super-Yang-Mills model, Phys.

Lett. B,233,173, (1989); S.A. Dias, R.M. Doria, J. L. Matheus Valle, A constraint analysis for an N = 112, D

supersymmetric model, Rev. Bras. Fis., 21, 1, (1991); C.M. Doria, R.M. Doria, and F.A.B.R. Carvalho, A

superspace origin for an extended Gauge model, Acta Physica Hungarica, v.73, p.51-58, (1993); C.A.S. Almeida,

R. M. Doria, Information on the Gauge principle from a (2,0) Supersymmetric Gauge Model Rev. Bras. Fis.,21,3,

(1991). - For fibre bundle origin: C. Doria, R.M. Doria, J.A. Helayël, A Fiber Bundle Treatment to a class of

Extended Gauge Models, Communications in Theoretical Physics, v.17,p.505-508, (1992). For o-model origin

see: R. M. Doria, J. A. Helayël-Neto and S. Mokhtari, An Extended Gauge Model as a Possible Origin for

Nonlinear σ-Models Europhys. Lett., 16(1),23 (1991); R.M. Doria and J.A. Helayël-Neto, A two-gauge field induced

CP-model, Rev. Bras. Fis., Vol. 19, n1 (1989); Almeida, C. A., Chauca, J. . and Doria, R. A less-constrained (2,0)

super-yang-mills model the coupling to non-linear σ-models. journal of advances in physics, 20, 209–114, (2022).

https://doi.org/10.24297/jap.v20i.9134.

J C Maxwell. Viii. a dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society

of London, (155):459–512, 1865.https://doi.org/10.1098/rstl.1865.0008

G J Stoney. XLIX. of the “electron,” or atom of electricity: To the editors of the philosophical magazine.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 38(233):418–420,

https://doi.org/10.1080/14786449408620653

P Curie. Sur la possibilité d’existence de la conductibilité magnétique et du magnétisme libre. Journal de Physique

Théorique et Appliqué, 3(1):415–417, 1894.https://doi.org/10.1051/jphystap:018940030041501

J J Thomson. The structure of the atom. Academie Royale de Belgique, 1913.

https://doi.org/10.1038/scientificamerican05031913-286supp

R A Millikan. On the elementary electrical charge and the avogadro constant. Physical Review, 2(2):109,

https://doi.org/10.1103/PhysRev.2.109

E Rutherford. Bakerian lecture: nuclear constitution of atoms. Proceedings of the Royal Society

of London. Series A, Containing Papers of a Mathematical and Physical Character, 97(686):374–400,

https://doi.org/10.1098/rspa.1920.0040

G E Uhlenbeck and S Goudsmit. Spinning electrons and the structure of spectra. Nature, 117(2938):264–265,

https://doi.org/10.1038/117264a0

W. Gilbert, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, Peter Short, London, (1600).

F London. Zur theorie und systematik der molekularkräfte. Zeitschrift für Physikk, 63(3):245–279,

https://doi.org/10.1007/BF01421741

O Klein. On the theory of charged fields. Surveys in High Energy Physics, 5(3):269–285,

https://doi.org/10.1080/01422418608228775

J Schwinger. Selected papers on quantum electrodynamics. Courier Corporation, 1958.

P. Kusch, Physical Review 72: 1256 (1947).

HC Corben and Julian Schwinger. The electromagnetic properties of mesotrons. Physical Review, 58(11):953, 1940.

https://doi.org/10.1103/PhysRev.58.953

T. D. Lee and C. N. Yang, Theory of electrical vector mesons interacting with the electromagnetic fields, Phys.

Rev. 130 1287, (1963).

Hill E. G. Pike O. J., Mackenroth F. and Rose S.J. A photon-photon collider in a vacuum hohlraum. Nature

Photonics, 8:434-436, 2017;https://doi.org/10.1038/nphoton.2014.95 John Ellis and Nick E. Mavromatos and

Tevong You, PRL 118, 261802(2017);

Ellis, John, et al. "Light-by-Light Scattering at Future e+e− Colliders." arXiv preprint arXiv:2203.17111 (2022);Evidence

for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nature physics,

v. 13, n. 9, p. 852-858, 2017; AAD, Georges et al. Observation of light-by-light scattering in ultraperipheral

Pb+ Pb collisions with the ATLAS detector. Physical review letters, v. 123, n. 5, p. 052001, 2019; D. d’Enterria

and G. G. da Silveira, Phys. Rev. Lett. 111 (2013) 080405, Erratum: [Phys. Rev. Lett. 116 (2016) 129901]; M.

Klusek-Gawenda, P. Lebiedowicz and A. Szczurek, Phys. Rev. C93 (2016) 044907.

N. Matzliah et al, Laser light can strecht and sequeze a whole cloud of atomics with a collective force, Phys Ver.

Lett 119 (2017); J.Q.Yu et al, Creation of electron-positron pairs in photon-photon collisions driven by 10-PW

LASER pulses, Phys. Rev. Lett. 122, 014802 (2019); C.Gong et al, Electron-positron pair production in frequency

modulated LASER fields, Phys. Rev. D101, 016008 (2020). https://doi.org/10.1103/PhysRevLett.118.261802

NIEMIEC, Jacek; OSTROWSKI, Michał; POHL, Martin. Cosmic-ray acceleration at ultrarelativistic shock waves:

effects of downstream short-wave turbulence. The Astrophysical Journal, v. 650, n. 2, p. 1020, 2006.

Kruglov, Sergey I, Nonlinear arcsin electrodynamics, Annalen der Physik 527.5-6, 397-401 (2015); A note on

nonlinear electrodynamics Patricio Gaete, José A. Helayël-Neto. Published in EPL 119 (2017) no.5, 51001 Effective

photon mass by Super and Lorentz symmetry breaking Luca Bonetti, Luís R. dos Santos Filho, José A. Helayël-

Neto), Alessandro D.A.M. Spallicci. Published in Phys.Lett. B764 (2017) 203-206;A 3-form Gauge Potential in

D in connection with a Possible Dark Sector of 4D- Electrodynamics D. Cocuroci, José Abdalla Helayël-Neto,

M.J. Neves, L.P.R. Ospedal. Published in Eur.Phys.J. C75 (2015) no.7, 322; Coulomb’s law modification driven

by a logarithmic electrodynamics Patricio Gaete, José A. Helayël-Neto, L.P. R. Ospedal. Published in EPL 125

(2019) no.5, 51001 Remarks on the static potential in theories with Lorentz violation terms Patricio Gaete, José A.

Helayël-Neto. Published in EPL 124 (2018) no.1, 11001; AKMANSOY, P. Niau; MEDEIROS, L. G. Constraining

Born–Infeld-like nonlinear electrodynamics using hydrogen’s ionization energy. The European Physical Journal C,

v. 78, n. 2, p. 1-9, 2018.

V.I. Denisov et al, Non-linear vacuum electrodynamics birefringence effect in a pulsar’s strong magnetic fields,

Phys. Rev. D90, 023011, (2014); V.I. Denisov et al, Pulsar radiation in post-Maxwellian vacuum nonlinear

electrodynamics, Phys. Rev. D94, 045021 (2016); A. Ejlli et al, The PVLAS experiment: a 25 year effort to

measure vacuum magnetic birefringence, arXiv:2005.12913v1 [physics.optics], 26 May (2020).

T. Aoyama, T.Kinoshita and M. Nio, Revised and improved value of the QED tenth order electron anomalous

magnetic, Phys. Rev. D97, 036001 (2018); S.Laporta, High-precision calculation of the 4-loop contribution to the

electron (g-2) in QED, Phys. Lett. B772, 232 (2017); L. Morel et al, Determination of fine structure constant with

an accuracy of 81 parts per trillion, Nature 588, 67 (2020).

A. Rajantie, Magnetic monopoles in fields theory and cosmology, Phil. Trans. Roy. Soc. A370, 5705 (2012);

R.J. Szabo, Magnetic monopoles and non-associative deformations of quantum theory, J. Phys.: Conf. Ser. 965,

(2018).M.C. Diamantini, C.A. Trugen berger and V.M. Vinokur, Quantum magnetic monopole condensate,

Communications Physics, 4:25 (2021). arXiv:2007.02356[hep-th].

J. Helayël-Neto, contemporary electromagnetism, l1nq.com/o9ldU, (2022).

Downloads

Published

2022-12-11

How to Cite

Couto, M. ., & Doria, R. . (2022). Maxwell to Photonics. JOURNAL OF ADVANCES IN PHYSICS, 20, 330–337. https://doi.org/10.24297/jap.v20i.9336

Issue

Section

Articles