Spin-Valued Four Bosons Electrodynamics

Authors

  • R. Doria Aprendanet, Petrópolis, Brazil,Quarks, Petrópolis, Brazil
  • I. Soares CBPF, Rio de Janeiro, Brazil, Quarks Petrópolis, Brazil

DOI:

https://doi.org/10.24297/jap.v19i.9030

Keywords:

four bosons electromagnetism

Abstract

Electromagnetism is based on electric charge and spin. The study here corresponds to understand on spin effects at a vectorial electrodynamics. Its scenario is a non-linear abelian electromagnetism where the electric charge is transmitted through a four bosons quadruplet, constituted by the usual photon, massive photon and charged massive photons. These four bosons intermediate the charge exchange ΔQ = 0, ±1.
The spin is introduced at first principles. A spintronics Lagrangian for four vector fields is performed. Considering that spin is a space-time physical entity derived from Lorentz Group, these vector fields are associated to Lorentz Group, as Lie algebra valued. Similarly to non-abelian gauge theories where Aμ≡ Aμ,ata, one introduces the relationship Aμ≡ Aμ,κλΣκλ where (Σκλ)αβ is the Lorentz Group generator.

Thus, based on three fundamentals which are light invariance, electric charge conservation law and vector fields Lie algebra valued through Lorentz Group generators, one derives a spin-valued four vectorial electrodynamics. It is given by the fields quadruplet Aμ1 ≡ {Aμ, Uμ, Vμ±}  where Aμ means the usual photon, Uμ a massive photon and Vμ± massive charged photons. Two novelties appear. The first one is that, new terms are developed into usual four bosons electromagnetism. They contribute to Lagrangian, equations of motion, Noether theorem. The second one is that the equations of motion derive a renormalizable spin coupling with the electric and magnetic fields.
There is a spin-1 electrodynamics to be investigated. A neutral electromagnetism is mandatory to be analyzed. Something beyond dipole, quadrupole and so on. Understand the role of spin in the electrical and magnetic properties of particles. A spin vectorial expression S-->  is obtained. It adds EM interactions not depending on electric charge and with spin interactions through electric dipole and magnetic moments.

Downloads

Download data is not yet available.

References

J. C. Maxwell, London Edinburgh Dublin Phys. Mag and J.Sc. Series IV, 21, 161 (196)

J. Chauca, R.Doria, I. Soares, JAP Vol 10 N 1 2605(2015); JAP, 13(1), 4535 (2017)

N. Bohr, Philos. Mag. 26 (1913) 1; Philos. Mag. 26 (1913) 476

Sin-Itiro Tomonaga, "The Story of Spin", Chicago University Press, 1998.

A. Compton, The magnetic electron, Jour. Franklin Inst. 192:2, (1921) 145

W. Gerlach; O. Stern, "Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld". Zeitschrift für Physik. 9: 349–352(1922); W. Gerlach; O. Stern. "Das magnetische Moment des Silberatoms". Zeitschrift für Physik. 9: 353–355; Gerlach, W.; Stern, O. (1922). Der experimentelle Nachweis des magnetischen Moments des Silberatoms". Zeitschrift für Physik. 8: 110–111.

S. Goudsmith and R. Kronig, Naturwissenschaffen 13(1925) 90; S. Goudsmith and G. E. Uhlenbeck, Physica (Utrecht) 5 (1925) 266; S. Goudsmit and G. E. Uhlenbeck, Spinning electrons and the structure of spectra, Nature 117 (1926) 264; G. E. Uhlenbeck, Physics Today, June 1976, p. 43.

L. Thomas, The motion of the spinning electron, Nature 117 (1926) 514

W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechanical relations, Zeitschrift für Physik 33 (1925) 879.

W. Heisenberg, P. Jordan, Anwendung Der Quantenmechanik Auf Das Problem Der Anomalen Zeemaneffekte, Zeit.f.Physik 37 (1926) 263

E. Schrödinger, An ondulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28 (1926) 1049.

W. Pauli Zer Quatermechanik des magnetischen Elektrons, Zeitschrift für Physik 43 (1927) 601.

P.A.M Dirac The quantum theory of the electron-I, The quantum theory of the electron-II Proc.R.Soc.Lond. A 117 (1928) 610; Proc.R.Soc.Lond.A 118 (1928), 351.

E. Cartan, "Theory of Spinors", Dover Publications Inc., New York, 1981.

V. Weisskopf, Physics in the twentieth century, Select essays (1972)

K. M. Case Phys. Rev. 94, 1442 (1954) C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958) J. Schwinger, Particles, Sources, and Fields (Addison-Wesley, Reading, MA, 1970). L. P. S. Singh and C. R. Hagen, Phys. Rev. D9, 898 (1974); 9, 910 (1974).

S. Weinberg, Lectures on Electromagnetism Particles and Quantum Field Theory, Proceedings of the Summer Institute, Brandeis University, 1970, edited by S. Defer (MIT Preas, Cambridge, MA, 1970), vol I.

S. Ferrara, M. Porrati and V. Teledgi, Phis. Rev. D46, 3529 (1992).

P. Kusch and H. Foley, The magnetic moment of the electron, Phys. Review, 74 (3): 250, (1948)

D. Nagle, R. Julian and S. Zacharias, Phys. Review 72 (1947) 1

J. Schwinger, Phys. Rev. 76 (1949) 6

K. A. Olive at al. Review of Particle Physics. Chin. Phys. C 38 (2014); G. W. Bennet et al, improved limit on the muon dipole moment, Phys. Review D 80 (2009) 5

D. Lee and C. N. Yang. Theory of charged vector mesons interacting with the electromagnetic field. Phys. Rev., 128:885-898, Oct 1962, Abdus Salam. Renormalizable electrodynamics of vector mesons. Phys. Rev., 130:1287-1290, May 1963, K. H. Tzou. Il Nuovo Cimento, 33:286, 1964; Abdus Salam and Robert Delbourgo. Renormalizable electrodynamics of scalar and vector mesons. ii. Phys. Rev., 135:B1398-B1427, Sep 1964.

L.Fonda, G.Chirardi, Symmetry Principles in Physics, Chapter III

N. Ramsay, Reports on progress in physics, 45(1) (1982),95

E. Wigner, On unitary representation of the inhomogeneus Lorentz Group, Annals of Mathematics, 149-204(1939)

J. Helayel, www.professorglobal.com.br

E.Noether, Invariante Variations Probleme, Math.-Phys Klasse (1918) 235

I.P. Ivanov et al, Phys. Rev. Lett. 124 (2020) 192001; T. Fujita, M.B.A. Jalil, S.G. Tan, S. Murakami, Gauge Fields in spintronics, J. Appl. Phys. 110, 121301 (2011); H. Ohanian, Quantum Measurements, American Journal of Physics 85, 5, (2016) "And what is spin", Am. J. Phys. 54,6 (1986)

Y. Aharanov and D. Bohm, Significance of the electromagnetic potentials of the quantum theory, Phys. Rev. 115 (1959) 485

K.Rith and A.Schafer, The Mistery of Nuclear Spin, Scientific American, July (1999)

Downloads

Published

2021-05-31

How to Cite

Doria, R. ., & Soares, I. (2021). Spin-Valued Four Bosons Electrodynamics. JOURNAL OF ADVANCES IN PHYSICS, 19, 93–133. https://doi.org/10.24297/jap.v19i.9030

Issue

Section

Articles