Understanding of University Students About Improper Integral

Authors

  • Angie Damian Mojica Universidad Autónoma de Guerrero

DOI:

https://doi.org/10.24297/ijrem.v11i.8681

Keywords:

Comprehension, Improper Integral, Semiotic Representations, Competition Model

Abstract

The study of the understanding of mathematical concepts is of great interest for research in Mathematics Education. In this sense, an investigation is carried out on the understanding of the concept of improper integral, a basic concept from the first courses of Bachelor of Mathematics for subsequent courses. The objective is to characterize the understanding of this mathematical concept through a proficiency model for this purpose, an instrument was designed that was applied to second-year university students. The research is qualitative exploratory and is based on the framework of the Theory of records of semiotic representations.

Downloads

Download data is not yet available.

References

Bisquerra, R. y Sabariego, M. (2004). El proceso de investigación (Parte I). En R. Bisquerra (Coord.), Metodología de la investigación educativa, (pp. 89-125). Madrid: La Muralla

Brizuela, B. M., y Earnest, D. (2008). Multiple notational systems and algebraic understandings: The case of the "best deal" problem. In J. Kaput, D. Carraher, y M. Blanton (Eds.), Algebra in the Early Grades (pp. 273-301). Mahwah, NJ: Lawrence Erlbaum and Associates.

Camacho, A. y Aguirre M. (2001). Situación didáctica del concepto de límite infinito: análisis preliminar. Revista Latinoamericana de Investigación en Matemática Educativa RELIME, 4(3), 237-265

Depool, R. A. (2004). La Enseñanza y Aprendizaje del Cálculo Integral en un Entorno Computacional. Actitudes de los Estudiantes Hacia el uso de un Programa de Cálculo Simbólico (PCS). Tesis Doctoral. Universidad de La Laguna

Dreyfus, T. (1991). Advanced in Mathematical Thinking Processes. En D. Tall. (Ed.). Advanced in Mathematical Thinking. (pp.25–41). Boston: Kluwer Academic Publishers.

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée, Annales de Didactique et de Sciences Cognitives, 5, IREM de Strasbourg, pp. 37- 65.

Duval, R. (1996). Quel cognitif retenir en didactique des mathematiques? Recherches en Didactique des Mathematiques, Vol. 6, 3, 349-382.

Duval, R. (1999). Representation, vision and visualization: cognitive functions in mathematical thinking, basic issues for learning. Actas del PME, 23, 3-26.

Duval, R. (2004). Duval, R. (2004). A crucial issue in mathematics education: The ability to change representation register, Regular Lecture en el 10th International Conference on Mathematics Education (ICME10), Dinamarca.

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61, 103-131. http://dx.doi.org/10.1007/s10649-006-0400-z

Galán-García, Aguilera-Venegas, Galán-García, Rodríguez-Cielos y Atencia-Mc.Killop, 2016] Galán-García, J.L., Aguilera-Venegas, G., Galán-García, M.A., Rodríguez-Cielos, P., y Atencia-Mc.Killop., (2016). Improving CAS capabilities: New rules for computing improper integrals. Appl. Math. Comput. In Press (Corrected Proof) doi: 10.1016/j.amc.2016.12.024.

Goldin, G. A. (2000). A Scientific Perspective on Structured, Task-Based Interviews in Mathematics Education Research, en Handbook of Research Design in Mathematics and Science Education (Kelly, A. E. y Lesh, R. A., eds.), Lawrence Erlbaum Associates, London, pp. 517-546.

González-Martín, A.S. y Camacho-Machín, M. (2002a). The improper integral. An exploratory study with First- Year University Students, Proceedings of the Second International Conference on the Teaching of Mathematics (ICTM2), Hersonisos (Grecia), CD Proceedings (Wiley, J., ed.).

González-Martín, A.S. y Camacho-Machín, M. (2002b). The comprehension of the concept of improper integral in Mathematics students: representation and transference, Proceedings of the 54th CIEAEM Conference, Granada: Ed. Proyecto Sur.

González-Martín, A.S. y Camacho-Machín, M. (2003). Non-routine situations and new technologies in University teaching. The improper integral, Proceedings of the 55th CIEAEM Conference, Płock (Polonia).

González-Martín, A.S. y Camacho-Machín, M. (2004). What is First-Year Mathematics students actual understanding about improper integration?, International Journal of Mathematical Education in Science and Technology, 35 (1), 73-89.

González-Martín, A.S. y Camacho-Machín, M. (2005). Sobre la comprensión en estudiantes de Matemáticas delconcepto de integral impropia. Algunas dificultades, obstáculos y errores. Enseñanza de las Ciencias, 23 (1), 81-96.

González-Martín, A.S., (2006). La generalización de la integral definida desde las perspectivas numérica, gráfica y simbólica utilizando entornos informáticos. Problemas de enseñanza y de aprendizaje. Tesis Doctoral. Servicio de Publicaciones de la universidad de La Laguna. ISBN: 84-7756-679-8.

González-Martín, A. S., Nardi, E., y Biza, I. (2011). Conceptually-driven and visually-rich tasks in texts and teaching practice: The case of infinite series. International Journal of Mathematical Education in Science and Technology, 42(5), 565–589.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, A., y Human, P. (1997). Making sense: teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann.

Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in integration. International Journal of Mathematical Education in Science and Technology, 40(2), 201–211.

Mendo L., Castañeda A. y Tarifa L. (2017). El desarrollo de argumentos matemáticos en estudiantes universitarios. Atenas, 3(39). 1-17.

Orton, A. (1983). Students’ understanding of integration, Educational Studies in Mathematics, 14 (1), 1-18.

Rasslan, S., y Tall, D. (2002). Definitions and images for the definite integral concept. In A. Cockburn y E. Nardi (Eds.), Proceedings of the 26th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, 89–96). Norwich, United Kingdom: PME.

Socas, M. (2001). Investigación en didáctica de la matemática vía modelos de competencia. Un estudio en relación con el lenguaje algebraico. Departamento de Análisis Matemático. Universidad de La Laguna (sin publicar).

Sofronas, K. S., DeFranco, T. C., Vinsonhaler, C., Gorgievski, N., Schroeder, L., y Hamelin, C. (2011). What does it mean for a student to understand the first-year calculus? Perspectives of 24 experts. The Journal of Mathematical Behavior, 30(2), 131–148.

Sealey, V. (2006). Definite integrals, Riemann sums, and area under a curve: What is necessary and sufficient. In S. Alatorre, J. L. Cortina, M. Sáiz, y A. Méndez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 46). Mérida, México: Universidad Pedagógica Nacional.

Thompson, P. W., y Silverman, J. (2008). The concept of accumulation in calculus. In M. Carlson y C. Rasmussen (Eds.), Making the connection: Research and practice in undergraduate mathematics, MAA Notes (Vol. 73, 43–52). Washington, DC: Mathematical Association of America.

Thompson, P. W., Byerley, C., y Hatfield, N. (2013). A conceptual approach to calculus made possible by technology. Computers in the Schools, 30(1–2), 124–147.

Törner G, Potari D, Zachariades T. (2014). Calculus in European classrooms: curriculum and teaching in different educational and cultural contexts. The International Journal on Mathematics Education,46(4), 549–560. DOI:10.1007/s11858-014-0612-0.

Published

2020-04-03

How to Cite

Damian Mojica, A. (2020). Understanding of University Students About Improper Integral. INTERNATIONAL JOURNAL OF RESEARCH IN EDUCATION METHODOLOGY, 11, 36-54. https://doi.org/10.24297/ijrem.v11i.8681

Issue

Section

Articles