Four Bosons EM Conservation Laws


  • R. M. Doria Quarks, Petrópolis, 25600, RJ, Brazil
  • I. Soares CBPF, Rio de Janeiro, Brazil, Quarks Petrópolis, Brazil



Four BosonsEletromagnetism, Light invariance, Electric charge conservation


Electromagnetism is expressed from two basic postulates. They are light invariance
and charge conservation. At this work one extends the Maxwell scenario from macroscopic to microscopic electromagnetism by following the elementary particles electric charge microscopic behavior. It yields a triune electric charge interrelationship. Three charges {+, 0, −} be exchanged through a vector bosons quadruplet. It is called Four Bosons Electromagnetism. A systemic EM physics appears to be understood. Maxwell photon is not enough for describing the microscopic electric charge physics. An extension for  electromagnetic energy is obtained. The fields quadruplet {Aµ, Uµ, Vµ±} are the porters of electromagnetic energy. They are the usual photon Aµ, massive photon Uµ and two charged photons Vµ±, A new understanding on EM phenomena has to be considered. A set determinism based on granular and collective fields is developed. A space-time evolution associated to a whole.
Conservation laws are studied. The EM phenomena is enlarged to three charges interchanges to {+, 0, −}. Two novelties appear. New features on nonlinear fields acting as own sources and on electric charge physics. Properties as conservation, conduction, transmission, interaction are extended to a systemic electromagnetism. A whole conservation law for electric charge emerges from three charges interwoven. Electric charge has a systemic behavior. Although there is no Coulomb law for zero electric charge, the Four Bosons Electromagnetism contains an EM energy which provides a neutral electromagnetism. Particles with zero charge {Aµ, Uµ} are carrying EM energy.

Another consideration is on EM energy being transported by four nonlinear fields. A new physicality appears. The abelian nonlinearity generates fields charges. Fields are working as own sources through mass terms, trilinear and quadrilinear interactions, spin couplings. Consequently the photon is more than being a consequence from electric charge oscillations. It is able to generate its own charge. Introduce the meaning of photonics.
Thus, electric charge is no more the isolate electromagnetic source. There are another conservation laws. Fields sources appear through corresponding equations of motion, Bianchi identities, energy-momentum, Noether laws and angular momentum conservation laws. They move EM to a fields charges dependence. Together with electric charge they carry
the electromagnetic flux. Supporting the Ahranov-Bohm experiment of potential fields as primitive entities.


Download data is not yet available.


J. C. Maxwell, London Edinburgh Dublin Phys. Mag and J.Sc. Series IV, 21, 161 (196)

J. Helayel Neto,

J. Plebanski. ’Lectures On Non-Linear Electrodynamics’ (1970); G. Boillat, JMP, Vol 11, N3, (1970); G.Boillat, Lettere Al Nuovo Cimento, Vol4, N7 (1972)

J. Chauca, R.Doria, I. Soares JAP Vol 10 No1 2605 (2015); J. Chauca, R. Doria, and I. Soares, Electric charge transmission through four bosons. JAP, 13(1):4535-4592, 2017.; J. Chauca, R. Doria, W.Soares, Non-Linear abelian gauge model, AIP Conf. Proc. 1483, 342-351 (2012)

Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959) 48.

J. Schwinger, Selected Papers on Quantum Electrodynamics Dowe Publications (1958); P.A.M Dirac. A theory of electrons and protons PRSL, 26(1930) 361; P.A.M Dirac. On quantum electrodynamics. Physikdische Zeitschrift der Sowieturian 2(1933) 468

A Compton, The magnetic electron, Jour. Franklin Inst. 192:2 (1921) 145

Gerlach, W.; Stern, O. (1922). "Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld". Zeitschrift für Physik. 9: 349–352; Gerlach, W.; Stern, O. (1922). "Das magnetische Moment des Silberatoms". Zeitschrift für Physik. 9: 353–355; Gerlach, W.; Stern, O. (1922). "Der experimentelle Nachweis des magnetischen Moments des

Silberatoms". Zeitschrift für Physik. 8: 110–111.

P.A.M. Dirac, The quantum theory of the electron-I, Proc. R. Soc. Lond. A 117 (1928) 610; The quantum theory of the electron II, Proc. R. Soc. Lond. A 118 (1928)

H. Ohanian, And what is spin?, Am. J. Phys. 54,6 (1986)

R. Doria and I. Soares, Spin Valued Four Bosons Electromagnetism, submitted paper (2021)

E.J. Konopinski, what the vector potential describes, Am. J. Phys 46, 499-502 (1978); A.C.T Wµ and C.N.Yang, Evolution of the concept of the vector potential in the description of fundamental interactions, Int.J.Mod.Phys. A 21, 32335-3277 (2006). Y. Aharonov and A. Casher, Phys. Rev. Lett. 53 (1984) 319; Y. Aharonov, P. Pearle and L. Vaidman, Phys. Rev. A37 (1988) 4052

G. Breit and John A. Wheeler. Collison of two light quanta. Phys. Rev., 46:1087-1091, Dec 1934.

S.L. Adler, Ann. Phys 67 (1971)

M. Delbruck, Zeits. Physik PR 36 (1930) 1590;84 (1933) 144

P.A.M Dirac, Quantised singularities in the electromagnetic field, PRSL A 133 (1931) 60.

G.’t Hooft, Nucl.Phys.B79 (1974) 276; A.M. Polyakov, JETP Letters 20(1974)

W. Heisenberg, H. Euler, Zeits. Physik 98,714(1936); H. Euler, Ann der Phys. 418(1936); H. Kleivert, arXiv: physics/0605038 [phys.hist-ph] (2006)

M. Born and L. Infeld. Electromagnetic mass. Nature, 132:970, 1932.; M. Born and L. Infeld. Foundations of the new field theory. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 144(852):425-451, 1934.

H,J,W Müller-Kirsten, Electrodynamics: An Introduction including Quantum Effects World Scientific

E. Noether, Nach. König. der Gevel. der Wissen. du Göttingen, Math.-Phys.Klasse (1918) 235; B. Berchel, D. Malterre, E. Medina, Gauge transformations and conserved quantities in classical and quantum mechanics, Am. J. Phys. 84 (2016); doi: 101119/1. 4955153

R. Doria, Physics of Light, AIP Conf. Proc. 1483, 35-117 (2012)

J. Chauca, R. Doria, W.Soares, A whole origin for polarization and magnetization, AIP Conf. Proc. 1483, 395-399 (2012); F.S Johnson, B.L. Cragin and R.R. Hodges, Electromagnetic momentum density and the Poynting vector in static fields, Am. J. Phys. 62, 33-41 (1994); M.G.Calkin, Linear momentum of quasiestatic electromagnetic fields, Am. J. Phys. 34, 921-925 (1966)

M. Faraday, Experimental Researches in Electricity, 3 vols, 1839,1844, 1855. Taylor & T. Francis, vols 1 and 3

A.Einstein, The fields equations of gravitation, Preussische Akademie der Wissenschaften, Sitzungsberichte, 1915 (part 2), 831




How to Cite

Doria, R. M., & Soares, I. . (2021). Four Bosons EM Conservation Laws. JOURNAL OF ADVANCES IN PHYSICS, 19, 40–92.