A Tiny, Counterintuitive Change to the Mathematics of the Schrodinger Wave Packet and Quantum ElectroDynamics Could Vastly Simplify How We View Nature

Authors

DOI:

https://doi.org/10.24297/jap.v17i.8696

Keywords:

Theory of Elementary Waves, Quantum Field Theory, Quantum Electrodynamics, Richard Feynman, Quantum Eraser, Double Slit Experiment, Purcell Effect, Bell Test Experiments, Feynman Diagrams

Abstract

This article proposes that an unexpected approach to the mathematics of a Schro ̋dinger wave packet and Quantum Electro-Dynamics (QED), could vastly simplify how we perceive the world around us. It could get rid of most if not all quantum weirdness. Schro ̋dinger’s cat would be gone. Even things that we thought were unquestionably true about the quantum world would change. For example, the double slit experiment would no longer support wave particle duality. Experiments that appeared to say that entangled particles can communicate instantaneously over great distances, would no longer say that. Although the tiny mathematical change is counterintuitive, Occam’s razor dictates that we consider it because it simplifies how we view Nature in such a pervasive way. The change in question is to view a Schro ̋dinger wave packet as part of a larger Elementary Wave traveling in the opposite direction. It is known in quantum mechanics that the same wave can travel in two countervailing directions simultaneously. Equivalent changes would be made to QED and Quantum Field Theory. It is known in QM that there are zero energy waves: for example, the Schro ̋dinger wave carries amplitudes but not energy.

Downloads

Download data is not yet available.

References

Arndt, M., O. Nairz, J. Vos-Andreae, et. al. (1999) Wave-particle duality of C60 molecules, Nature, 401, 680-682. https://doi.org/10.1038/44348

Aspect, A., P. Grangier, and G. Roger. (1981) Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 47, 460-463. https://doi.org/10.1103/PhysRevLett.47.460 25

Aspect, A., P. Grangier, and G. Roger. (1982) Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment. Physical Review Letters, 49, 91-94. https://doi.org/10.1103/PhysRevLett.49.91

Aspect, A., J. Dalibard, and G. Roger. (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49, 1804-1807. https://doi.org/10.1103/PhysRevLett.49.1804

Baggott, J. (2011) The Quantum Story: a history in 40 moments, Oxford University Press. ISBN: 978–0-19-956684- 6

Becker, A. (2018) What Is Real? (Basic Books). ISBN: 978-1-5416-9897-0

Bell, J. S. (1981) Bertlmann’s socks and the nature of reality Journal de Physique, 42, C2-C41.

https://doi.org/10.1051/jphyscol:1981202

Bell, J. S. (1964) On the Einstein Podolsky Rosen paradox. Physics 1, 195-200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

Boyd,J.H.(2020a)NewSchro ̋dingerwavemathematicschangesexperimentsfromsayingthereis,todenyingthere is quantum weirdness. Journal of Advances in Mathematics 18, 82-117. https://doi.org/10.24297/jam.v18i.8656

Boyd, J. H. (2020b) New Schro ̋dinger wave math changes experiments so they deny there is quantum weirdness. https://www.youtube.com/watch?v=_k9aDgDYUco&feature=youtu.be (access date 2020-02-24).

Boyd, J. H. (2020c) A mathematical explanation for the double slit experiment of quantum mechanics. https://www.youtube.com/watch?v=O9dpDcF6Uhs (access date 2020-02-24).

Boyd, J. H. (2019a) Decrypting the central mystery of quantum mathematics: Part 1. New axioms explain the double slit experiment. Journal of Advances in Mathematics 17, 255-282. https://doi.org/10.24297/jam.v17i0.8475

Boyd, J. H. (2019b) Decrypting the Central Mystery of Quantum Mathematics: Part 2. A mountain of empirical data supports TEW. Journal of Advances in Mathematics 17, 283-314. https://doi.org/10.24297/jam.v17i0.8489

Boyd,J.H.(2019c)Decryptingthecentralmysteryofquantummathematics:Part3.Anon-Einstein,non-QMview of Bell test experiments. Journal of Advances in Mathematics 17, 315-331. https://doi.org/10.24297/jam.v17i0.8490

Boyd, J. H. (2019d) Decrypting the central mystery of quantum mathematics: Part 4. In what medium do Elemen- tary Waves travel? Journal of Advances in Mathematics 17, 332-351. https://doi.org/10.24297/jam.v17i0.8491

Boyd, J. H. (2018a) The von Neumann and double slit paradoxes lead to a new Schro ̋dinger wave mathematics. Journal of Advances in Physics 14, 5812-5834. https://doi.org/10.24297/jap.v14i3.7820

Boyd, J. H. (2018b) The quantum world is astonishingly similar to our world: The timing of wave function collapse according to the Theory of Elementary Waves. Journal of Advances in Physics 14, 5598-5610. DOI: 10.24297/jap.v14i2.7555

Boyd,J.H.(2017)Asymmetryhiddenatthecenterofquantummathematicscausesadisconnectbetweenquantum math and quantum mechanics. Journal of Advances in Mathematics, 13, 7379-86. DOI: 10.24297/jam.v13i4.6413.

Boyd, J. H. (2017) Paul Dirac’s view of the Theory of Elementary Waves. Journal of Advances in Physics 13, 4731-4734. DOI: https://doi.org/10.24297/jap.v13i3.5921

Boyd, J. H.(2017) The Boyd Conjecture. Journal of Advances in Physics 13, 4830-37. https://doi.org/10.24297/jap.v13i4.6038 (access date 2020-02-27)

Boyd, J. H. (2015a) A paradigm shift in mathematical physics, Part 4: Quantum computers and the local realism of all 4 Bell states. Journal of Advances in Mathematics, 11, 5476-5493. https://doi.org/10.24297/jam.v11i7.1224.

Boyd, J. H. (2015b) A paradigm shift in mathematical physics, Part 3: A mirror image of Feyn- man’s quantum electrodynamics (QED. Journal of Advances in Mathematics, 11, 3977-3991. DOI: https://doi.org/10.24297/jam.v11i2.1283.

Boyd,J.H.(2015c)Aparadigmshiftinmathematicalphysics,Part2:AnewlocalrealismexplainsBelltest&other experiments. Journal of Advances in Mathematics, 10, 3828-3839. DOI: https://doi.org/10.24297/jam.v10i9.1884.

Boyd, J. H. (2015d) A paradigm shift in mathematical physics, Part 1: The Theory of Elementary Waves (TEW). Journal of Advances in Mathematics 10, 3828-3839. http://cirworld.com/journals/index.php/jam/article/view/4719. (access date 2020-02-27)

Boyd, J. H. (2015e) The Theory of Elementary Waves eliminates Wave Particle Duality. Journal of Advances in Physics 7, 1916-1922. https://www.rajpub.com/index.php/jap/article/view/2279. (access date 2020-02-27)

Boyd, J. H. (2015f) A new variety of local realism explains a Bell test experiment: the The- ory of Elementary Waves (TEW) with no hidden variables’. Journal of Advances in Physics 8, 2051-58. https://www.semanticscholar.org/paper/A-new-variety-of-local-realism-explains-a-Bell-test- Boyd/445009d95dd80180537216f953dbf4d4ddc8af7d. (access date 2020-02-27)

Boyd, J. H. (2015g) A proposed physical analog of a quantum amplitude: Corkscrew model from the Theory of Elementary Waves (TEW). Journal of Advances in Physics 10, 2774-2783. https://rajpub.com/index.php/jap/article/view/1324 (access date 2020-02-27)

Boyd, J. H. (2013a) Re-thinking a delayed choice quantum eraser experiment: a simple baseball model. Physics Essays, 26, 100-109. DOI: 10.4006/0836-1398-26.1.100.

Boyd, J. H. (2013b) Re-thinking Alain Aspect’s 1982 Bell test experiment with delayed choice. Physics Essays, 26, 582-591. https://doi.org/10.4006/0836-1398-26.4.582

Boyd, J. H. (2012) Rethinking a Wheeler delayed choice gedanken experiment. Physics Essays 25, 390-396. https://doi.org/10.4006/0836-1398-25.3.390

Cirel’son, B. S. (1980) Quantum generalizations of Bell’s inequality Letters in Mathematical Physics 4, 93-100. https://doi.org/10.1007/BF00417500

Clauser, J. F., M. A. Horne, A. Shimony and R. A. Holt. (1969) Proposed experiment to test local hidden-variable theories. Physical Review Letters 23, 880-884. https://doi.org/10.1103/PhysRevLett.23.880

Davisson, C. J. and L. Germer (1927) Reflection of electrons by a crystal of nickel Nature, 119 558-560. https://doi.org/10.1038/119558a0

Davisson, C.J.,(1928a) The diffraction of electrons by a crystal of nickel Bell System Technical Journal 7 90-105. https://doi.org/10.1002/j.1538-7305.1928.tb00342.x

Davisson, C. J. (1928b) Are Electrons Waves? Franklin Institute Journal 205, 597. https://doi.org/10.1016/S0016- 0032(28)90979-5

Einstein, A., B. Podolsky, and N. Rosen. (1935) Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777

Feynman, R. P. (2010) Feynman Lectures on Physics, vol. 3 (Basic Books) ISBN-13: 978-0465025015, see pages I-1 to 1-11 discussion of the double slit experiment as the central mystery of QM.

Feynman, R. P. (1985) QED: The Strange Theory of Light and Matter (Princeton University Press). ISBN 978-0-691-12575-6

Freire, O. (2003) Interview with Dr. Franco Selleri. American Institute of Physics: Oral History Interviews. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/28003-1. and https://www.aip.org/history- programs/niels-bohr-library/oral-histories/28003-2. (accessed July 15, 2019)

Giustina, M., A. Mech, S. Ramelow, et. al. (2013) Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 217-230. doi:10.1038/nature12012

Goy, G., J. M. Raimond, M. Gross, et.al. (1983) Observation of cavity enhanced single-atom spontaneous emission Physical Review Letters, 50, 1903-1906. https://doi.org/10.1103/PhysRevLett.50.1903

Haroche, S. and D. Kleppner, (1989). Cavity Quantum Electrodynamics, Physics Today, 42, 24-30. https://doi.org/10.1063/1.881201

Hensen, B., H. Bernien, A. E. Dréau, et.al. (2015) Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres Nature 526, 682 - 686. doi: 10.1038/nature15759.

Hulet, R. G., E. S. Hilfer, and D. Kleppner (1985) Inhibited spontaneous emission by a Rydberg atom Physical Review Letters, 55, 2137-2140. https://doi.org/10.1103/PhysRevLett.55.2137

Khalili, A. (2013) Double slit experiment explained. Royal Institution. https://www.youtube.com/watch?v=A9tKncAdlHQ (access date 2020-02-26).

Kim, Y., R. Yu, S.P. Kulik, Y.H. Shih, Marlan O. Scully. (2000) A delayed choice quantum eraser. Physical Review Letters 84, 1-5. DOI: 10.1103/PhysRevLett.84.1

Little, L. E. (1996) Theory of Elementary Waves. Physics Essays 9, 100-134. https://doi.org/10.4006/1.3029212 Little, L. E. (2000) Theory of Elementary Waves. Lecture at the Jet Propulsion Labs. Go to YouTube and search

for “Lewis E. Little JPL” (access date Feb 17, 2020).

Little, L. E. (2009) Theory of Elementary Waves. New Classics Library, New York. ISBN: 978-161694-032-1

O’Dowd, M. (2017) PBS Space Time, Quantum Field Theory playlist. https://www.youtube.com/playlist?list=PLsPUh22kYmNBpDZPejCHGzxyfgitj26w9 (access date 2020-02-24).

Pfleegor, R. L. and L. Mandel. (1967) Interference of independent photon beams. Physical Review, 159,1084-1088. https://doi.org/10.1103/PhysRev.159.1084

Pfleegor, R. L. and L. Mandel. (1968) Further experiments on interference of independent photon beams at low light levels. Journal of the Optical Society of America, 58, 946-950. https://doi.org/10.1364/JOSA.58.000946

Popper, K. R. (1982) Quantum Theory and the Schism in Pysics (Routledge), ISBN: 0-415-09112-8.

Purcell, E. M. (1946) Spontaneous emission probabilities at radio frequencies Physical Review, 69, 681.

Scully, M. O. and K. Dru ̋hl. (1982) Quantum eraser: A proposed photon correlation experiment and ’delayed choice’ in quantum mechanics. Physical Review A, 25, 2208-2213. https://doi.org/10.1103/PhysRevA.25.2208

Selleri, F. (1982). On the direct observability of quantum waves Foundations of Physics 12, 1087-1112. https://doi.org/10.1007/BF01300548

Selleri, F. (2002) Lezioni Di Relatività, (Bari, Italy: Progedit), ISBN 88-88550-33-X. Translated by Dominick Scaramuzzino, 2016-2017, Bethany, CT, USA.

Tong, D. (2017) “Quantum Fields,” The Royal Institution, https://www.youtube.com/watch?v=zNVQfWC_evg (access date 2020-02-24).

Published

2020-04-03

How to Cite

Boyd, J. (2020). A Tiny, Counterintuitive Change to the Mathematics of the Schrodinger Wave Packet and Quantum ElectroDynamics Could Vastly Simplify How We View Nature. JOURNAL OF ADVANCES IN PHYSICS, 17, 169-203. https://doi.org/10.24297/jap.v17i.8696

Issue

Section

Articles