Effect of rapid solidification and calcium additions on Sn-38 wt.%Pb-6 wt.%Sb melt-spun alloys

Authors

  • Rizk Mostafa Shalaby Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt, P. O. Box: 35516.
  • Shalabia Badr Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
  • Nermin Ali Abdelhakim Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt, P. O. Box: 35516.
  • Mustafa Kamal Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt, P. O. Box: 35516.

DOI:

https://doi.org/10.24297/jap.v11i5.6837

Keywords:

Melt-spun process, mechanical properties, electrical resistivity, micro-hardness

Abstract

The effect of calcium additions on the structure and physical properties of melt-spun process Sn-38Pb-6Sb alloys have been experimentally investigated at a solidification rate of ~105 K/s. Structure, internal friction, elastic moduli, microhardness and electrical resistivity of the Sn-38%Pb , Sn-38%Pb -6%Sb , Sn-38%Pb -6%Sb-0.5%Ca , Sn-38%Pb -6%Sb -1%Ca , Sn-38%Pb -6%Sb -1.5%Ca , Sn-38%Pb -6%Sb -2%Ca , Sn-38%Pb -6%Sb -2.5%Ca (in wt%) rapidly solidified alloys are investigated. The results showed that the mechanical and electrical properties values are enhanced for ternary Sn-38%Pb -6%Sb alloy. The examined mechanical and electrical conductivity decreased by addition of calcium content in the studied alloys. It also leads to with increasing Ca content the SnSb inter-metallic compound (IMC) precipitates are increased in the Sn matrix. The results were explained in terms of the dislocation theory, effect of quenching rate on the produced density fluctuations in composition and the modes of interaction of crystal lattice defects.

Downloads

Download data is not yet available.

References

[1] Mustafa Kamal, Shalabia Badr and Nermin Ali Abdelhakim, International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01
[2] M. Kamal, J.C. Pieri and R. Jouty, Mém. Sci. Rev. Mét., Mars, 143 (1983).
[3] N.R. Green, J.A. Charles, G.C. Smith, Mater. Sci. Technol. (UK) 10, 11, 977 (1994).
[4]Q.Li, E. Johnson, A. Johansen and L. Sarhoft-Kristensen, J. Mater. Res. 7, 2756 (1992).
[5] G. Thomas and R.H. Willens, Acta metall., 13, 139 (1965), and 14, 138 (1966).
[6] S.N. Tewari, and R.Shah, Metall. Trans. A, Phys. Metall. Mater.Sci. (USA) 23A (12), 3383 (1992).
[7]P.Zhang, Q.P.Kong and H.Zhou, Phil. Mag. A. Phys. Condens. Matter.Struct.Defects Mech. Prop.(UK) 77 (2), 437 (1998).
[8]I.Manna and S.K. Pabi, phys. stat. sol. (a), 123, 393 (1991).
[9] S. H. Liu, D. R. Poilier and P. N. Ocansey, Metall. Mater. Trans. A, Phys. Metall. Mater.Sci., 26 A (3), 741 (1995).
[10] P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders,” Journal of Materials, pp. 14–18 (July 1993).
[11] R. J. Klein Wassink, Soldering in Electronics, 2nd ed., Electrochemical Publications Ltd, Scotland, 1989, pp. 141–147.
[12]Manko, H. H., Solders and Soldering,McGraw-Hill, (1964). [13] Holmes, J. F., "Lead and Its Alloys,"Metal Industry, Vol. 8, (December 1961).
[14] M. Kamal, A. M. Shaban, M. El-Kady and R. Shalaby, Radiation Effects and Defects in Solids, 138, 307 (1996).
[15] M.Kamal, A.M.Shaban, M.El-Kady and R.M.Shalaby, 2nd International Conference of Engineering Physics and Mathematics, Faculty of Engineering, Cairo University, Cairo, Vol.2,pp.107-121,1994.
[16] B. D. Cullity ,Elements of X-ray diffraction, Addison-Wesley Series Metallurgy and Materials ,(1956), Ch.2 .
[17] Mustafa Kamal and Abu- Bakr El-Bedewi, Journal of Material Science .Materials in Electronics 11, (2000) 519-523.
[18] G. Wiedemann ,R.Franz ,Ann.Phys .89, 497 (1853) .
[19] A. Sommerfeld ,NaturWissenschaften 15,825 (1927).
[20] Makariy A. Tanatar ,JohnpierrePaglione , CedomirPetrovic ,Louis Taillefer ,Science , June (2007 ) Vol.316 , PP:1320-1322 .
[21] G. E. Doan, The Principles of Physical Metallurgy, McGraw-Hill Book Company, Inc. 52-743 (1953) PP: 215-217.
[22] J. E. Parrott and Audrey D. Stukes , Thermal Conductivity of Solids , (1975)Pion Limited ,ISBNO 85086 047 4 PP:1-11 .
[23] A. Inoue, H. S. Chen. J. T. Krause, T. Msumoto, M. Hagiwara, Journal of Materials Science, 18, 2743-2751 (1983).
[24] Morihiko Nakamura and kazuhiro Kimura, Journal of materials Science 26, 2208-2214 (1991). [25] H. M. Ledbetter, Mater. Sci. Eng., 27,133 (1977).
[26] T. Gorecki, Mater. Sci. Eng., 43,225-230 (1980).
[27] Anish Kumar, T. Jayakumar, Baldev Raj, K. K. Ray, ActaMaterialia 51, 2417- 2426 (2003).
[28] W. Koster and H. Franz, Metall. Rev; 6(21):1(1961).
[29] CemalBasaran, Jianbin Jiang, Mechanics of Materials, 34, 349-362 (2002).
[30] U.Kolemen ,O. Uzun ,M. Ydmazhar, N. Gϋlclϋ, Y. Yanmaz , Journal of Alloys and Compounds, 415(2006) 300-306 .
[31] K. Sangwal ,B.Surowska , Mater .Res. Innov. 7 (2003) 91-104 .

Downloads

Published

2015-12-28

How to Cite

Shalaby, R. M., Badr, S., Abdelhakim, N. A., & Kamal, M. (2015). Effect of rapid solidification and calcium additions on Sn-38 wt.%Pb-6 wt.%Sb melt-spun alloys. JOURNAL OF ADVANCES IN PHYSICS, 11(4), 3224–3235. https://doi.org/10.24297/jap.v11i5.6837

Issue

Section

Articles