A Solution of Fractional Laplace's Equation by Modified Separation of Variables

Authors

  • Amir Pishkoo Physics department-Nuclear Science Research School (NSTRI)
  • Maslina Darus Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul.Ehsan, Malaysia
  • Fatemeh Tamizi Islamic Azad University Zahedan Branch, Zahedan, Iran

DOI:

https://doi.org/10.24297/jap.v4i1.2049

Keywords:

Fractional differential equation, Laplace's equation, Meijer's G-function, Modified separation of variables.

Abstract

This paper applies the Modified separation of variables method (MSV) suggested by Pishkoo and Darus towards obtaining a solution for fractional Laplace's equation. The closed form expression for potential function is formulated in terms of Meijer's G-functions (MGFs). Moreover, the relationship between fractional dimension and parameters of Meijer’s G-function for spherical Laplacian in R, for radial functions is derived.

Downloads

Download data is not yet available.

Author Biography

Maslina Darus, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul.Ehsan, Malaysia

School of Mathematical Sciences, Faculty of Science and Technology

References

Asad, H. , Zubair, M. and Mughal, M.-J. “Reflection and Transmission at Dielectric-Fractal interface”, Progress in Electromagnetics Research 125 (2012) pp. 543-558.

Mandelbrot, B. “The Fractal Geometry of Nature”, W. H. Freeman, New York, 1983.

Tarasov, V. E. “Electromagnetic fields on fractals”, Modern Physics Letters A 21 (2006) pp. 1587-1600.

Tarasov, V. E. “Continuous medium model for fractal media”, Phys. Lett. A 336 (2005) pp. 167-174.

Svozil, K. “Quantum field theory on fractal spacetime: a new regularization method”, J. Phys. A 20 (1987) pp. 3861-3875.

Ren, F. Y. , Liang, J. R. , Wang, X. T. and Qiu, W. Y. “Integrals and derivatives on net fractals”, Chaos, Soliton andFractals 16 (2003) pp. 107-117.

Vicsek, T. “Fractal models for diffusion controlled aggregation”, J. Phys. A: Math. Gen. 16 (1983) pp. 647-652.

Wagner, G. C. , Colvin, J. T. , Allen, J. P. and Stapleton, H. J. “Fractal models of protein structure, dynamics and

magnetic relaxation”, J. Am. Chem. Soc. 107 (1985) pp. 5589-5594.

Palmer, C. and Stavrinou, P. N. “Equations of motion in a non-integer-dimension space”, Journal of Physics A 37(2004) pp. 6987-7003.

Hussain, A. , S. Ishfaq, Q. A. Naqvi, “Fractional curl operator and fractional waveguides”, Progress in

Electromagnetics Research Letters, PIER 63 (2006) pp. 319-335.

Zubair, M. , Mughal, M. J. and Naqvi, G. A. Rizvi, “Differential electromagnetic equations in fractional space”,

Progress in Electromagnetics Research Letters, PIER 114 (2011) pp. 255-269.

Zubair, M. , Mughal, M. J. and Naqvi, G. A. “An exact solution of the cylindrical wave equation for electromagneticfield in fractional dimensional space”, Progress in Electromagnetics Research Letters, PIER 114 (2011) pp. 443-455.

He, J. H. “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Comput. Methods Appl. Mech. Eng. 167 (1998) pp. 57-68.

Muslih, S. I. and Baleanu, D. “Fractional multipoles in fractional space”, Nonlinear Analysis: Real World Applications 8(2007) pp. 198-203.

Baleanu, D., Golmankhaneh, A. K. “On electromagnetic field in fractional space”, Nonlinear Analysis: Real World Applications 11 (2010) pp. 288-292.

Stillinger, F. H. “Axiomatic basis for spaces with non-integer dimension”, Journal of Mathematical Physics 18 (1977) pp. 1224-1234.

Pishkoo, A. and Darus, M. , “Meijers G-functions (MGFs) in Micro- and Nano-structures”, Journal of Computational and Theoretical Nanoscience 10 (2013) pp. 2478-2483.

Pishkoo, A. and Darus, M. , “Some Applications of Meijer G-functions as Solutions of Differential Equations in

Physical Models”, Journal of Mathematical Physcis, Analysis, Geometry, 3 (2013) pp. 379-391.

Pishkoo, A. and Darus, M. , “G function solutions for Diffusion and Laplace's equations”, Journal of Advances in Mathematics, 4 (2013) pp. 359-365.[20] Pishkoo, A. and Darus, M. , “G-function solutions for Schrodinger equation in Cylindrical coordinates system”, Applied Mathematics, 5 (2014) pp. 342-346.

Pishkoo, A. and Darus, M. “Fractional differintegral transformation of univalent Meijers G-functions. Journal of Inequalities and Applications” 2012 (2012) article 36.

Kiryakova, V. “Generalized Fractional Calculus and Applications”. Longman, Harlow, UK (1994).

Andrews, L. C. “Special Functions for Engineers and Applied Mathematicians”, MacMillan, New York (1985).

Luke, Y. L. “The Special Functions and Their Approximations”, Complex Variables, vol. I. Academic Press, New York (1969).

Klimyik, A. U. “Meijer G-function. In Michiel, H (ed.), Encyclopaedia of Mathematics”, Springer, Berlin (2001).

Askey, R. A. “Meijer G-function. In Adri, D, Olde, B (eds.) NIST Handbook of Mathematical Functions”, Cambridge University Press, Cambridge (2010).

Kilbas, A. A. , Srivastava, H. M. and Trujillo, J. J. “Theory and Application of Fractional Differential Equations”, Elsevier, Amsterdam (2006).

Prudnikov, A. P. , Brychkov, I. U. A. and Marichev, O. I. “Integrals and Series: Some More Special Functions”. Gordon & Breach, New York (1992).

A. Erdelyi, A. , Magnus, W., Oberhettinger and Tricomi, F. “Higher Transcendental Functions”, Vols. 1-3. McGraw-Hill, New York (1953).

Geyi, W. “Foundation of Applied Electrodynamics”. Wiley (2010).

Farlow, S. J. “Partial Differential Equations for Scientists and engineers”, Wiley (1993).

Downloads

Published

2014-03-05

How to Cite

Pishkoo, A., Darus, M., & Tamizi, F. (2014). A Solution of Fractional Laplace’s Equation by Modified Separation of Variables. JOURNAL OF ADVANCES IN PHYSICS, 4(1), 397–403. https://doi.org/10.24297/jap.v4i1.2049

Issue

Section

Articles