Global existence and uniqueness of the solution to a nonlinear parabolic equation

Authors

  • Alexander G. Ramm Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA

DOI:

https://doi.org/10.24297/jam.v14i2.7503

Keywords:

nonlinear parabolic equations, global solutions

Abstract

Consider the equation

 u’ (t)  - delta2.png u + | u |p u = 0, u(0) = u0(x), (1),

where u’ := du/dt , p = const > 0, x E R3, t > 0.

 Assume that u0 is a smooth and decaying function,

          ||u0|| =            sup             |u(x, t)|.

                                        x E R3 ,t E R+     

It is proved that problem (1) has a unique global solution and this

solution satisfies the following estimate

                             ||u(x, t)|| < c,

where c > 0 does not depend on x, t.

Downloads

Download data is not yet available.

Author Biography

Alexander G. Ramm, Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA

Department of Mathematics, Kansas State University,
Manhattan, KS 66506-2602, USA

Downloads

Published

2018-07-30

How to Cite

Ramm, A. G. (2018). Global existence and uniqueness of the solution to a nonlinear parabolic equation. JOURNAL OF ADVANCES IN MATHEMATICS, 14(2), 7860–7863. https://doi.org/10.24297/jam.v14i2.7503