Estimates of Solutions to Nonlinear Evolution Equations

Authors

  • Alexander G. Ramm Kansas State University, Manhattan, USA

DOI:

https://doi.org/10.24297/jam.v14i2.7445

Keywords:

Nonlinear Evolution Equations

Abstract

Consider the equation

                 u’(t) = A (t, u (t)),   u(0)= U;   u' := du/dt     (1).  

Under some assumptions on the nonlinear operator A(t,u) it is proved that problem (1) has a unique global solution and this solution satisfies the following estimate                            

                  ||u (t)|| < µ (t) -1     for every t belongs to R+ = [0,infinity).

Here µ(t) > 0,   µ belongs to  C1 (R+), is a suitable function and the norm ||u || is the norm in a Banach space X with the property ||u (t) ||’   <=  ||u’ (t) ||.

Downloads

Download data is not yet available.

Author Biography

Alexander G. Ramm, Kansas State University, Manhattan, USA

Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA

References

Ramm, A. G., Stability of the solutions to evolution problems, Mathematics, 1, (2013), 46-64.doi:10.3390/math1020046 Open access Journal:http://www.mdpi.com/journal/mathematics

Ramm, A. G., Large-time behavior of solutions to evolution equations,Handbook of Applications of Chaos Theory, Chapman and Hall/CRC,2016, pp. 183-200 (ed. C.Skiadas).

Ramm, A. G., Hoang, N. S., Dynamical Systems Method and Applica-tions. Theoretical Developments and Numerical Examples. Wiley, Hobo- ken, 2012.

Downloads

Published

2018-07-03

How to Cite

Ramm, A. G. (2018). Estimates of Solutions to Nonlinear Evolution Equations. JOURNAL OF ADVANCES IN MATHEMATICS, 14(2), 7812–7817. https://doi.org/10.24297/jam.v14i2.7445