Symmetry problem 1
DOI:
https://doi.org/10.24297/jam.v15i0.7945Abstract
A symmetry problem is solved. A new method is used. The idea of this methodis to reduce to a contradiction the PDE and the over-determined boundary data on the boundary.The new method allows one to solve other symmetry problems.
Downloads
References
T. Chatelain and A. Henrot, Some results about Schier's conjectures, Inverse Problems, 15, (1999), 647-658.
A. G. Ramm, Inverse Problems, Springer, New York, 2005.
A. G. Ramm, A symmetry problem, Ann. Polon. Math., 92, (2007), 49-54.
A. G. Ramm, Symmetry problem, Proc. Amer. Math. Soc., 141, N2,(2013), 515-521.
A. G. Ramm, The Pompeiu problem, Global Journ. of Math. Analysis (GJMA), 1, N1, (2013), 1-10.
Open access Journal:
http://www.sciencepubco.com/index.php/GJMA/issue/current
A. G. Ramm, A symmetry result for strictly convex domains, Analysis, 35 (1), (2015), 29-32.
A. G. Ramm, Solution to the Pompeiu problem and the related symmetry problem, Appl. Math. Lett., 63, (2017),
-33.
A. G. Ramm, Scattering by obstacles, D.Reidel, Dordrecht, 1986.
A. G. Ramm, Scattering by obstacles and potentials, World Sci. Publ., Singapore, 2017.
A. G. Ramm, Necessary and sucient condition for a surface to be a sphere, Open J. Math. Anal., 2, (2018),
issue 2, 51-52.
Open access: https://pisrt.org/psr-press/journals/oma/
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.