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Abstract

Consider the equation

u′(t)−∆u+ |u|ρu = 0, u(0) = u0(x), (1),

where u′ := du
dt , ρ = const > 0, x ∈ R3, t > 0.

Assume that u0 is a smooth and decaying function,

‖u0‖ = sup
x∈R3,t∈R+

|u(x, t)|.

It is proved that problem (1) has a unique global solution and this
solution satisfies the following estimate

‖u(x, t)‖ < c,

where c > 0 does not depend on x, t.
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1 Introduction

Let

u′ −∆u+ |u|ρu = 0, u(0) = u0; u′ :=
du

dt
, (1)

where ρ > 0, t ∈ R+ = [0,∞), x ∈ R3, X is a Banach space of real-valued
functions with the norm ‖u(x, t)‖ := supx∈R3,t∈R+

|u(x, t)|. We assume that

‖u‖ ≤ c. (2)

Corresponding author: Email: ramm@ksu.edu

Website:  https://cirworld.com

ISSN: 2347-1921
Volume:14 Issue: 2
DOI:10.24297/jam.v14i2.7503
Journal: Journal of Advances in Mathematics



2

We say that u is a global solution to (1) if u exists ∀t ≥ 0.
Our result is formulated in Theorem 1. Our method is simple and differs

from the published results, see [1], [2] and references there.
The novel points in this work are:
a) There is no restriction on the upper bound of ρ.
In [1], (Section 1.1) a nonlinear hyperbolic equation with the same non-

linearity is studied in a bounded domain, uniqueness of the solution is proved
only for ρ ≤ 2/(n − 2), and existence is proved by a different method. The
contraction mapping theorem is not used.

In [2] the quasi-linear problems for parabolic equations are studied in Chap-
ter 5 in a bounded domain and under the assumptions different from ours.
There are many papers and books on non-linear problems for parabolic equa-
tions (see the bibliography in [1], [2].

b) Existence of the global solution is proved.
c) Method of the proof differs from the methods in the cited literature.
Our result is formulated in Theorem 1:
Theorem 1. Problem (1) has a unique global solution in X for any u0 ∈ X.

2 Proofs

Let g(x, t) = e−|x|
2

(4πt)3/2
. If u solves (1) then

u(t) = −
∫ t

0

dτ

∫
g(x− y, t− τ)|u|ρudy+∫

g(x− y, t)u0(y)dy := A(u) + F := Q(u),

(3)

where
∫

:=
∫
R3 . Let X be the Banach space of continuous in R3×R+ functions,

R+ := [0,∞), ‖u‖ := maxx∈R3,t∈[0,T ] |u(x, t)|. If ‖u‖ ≤ R then ‖A(u)‖ ≤
TRρ+1, where the identity

∫
g(x− y, t− τ)dy = 1 was used. From (3) one gets

‖u‖ ≤ T‖u‖ρ+1 + ‖F‖. (4)

Thus, Q maps the ball B(R) = {u : ‖u‖ ≤ R} into itself if T is such that

TRρ+1 + ‖F‖ ≤ R. (5)

The Q is a contraction on B(R) if

‖Q(u)−Q(v)‖ ≤ T (ρ+ 1)Rρ‖u− v‖ ≤ q‖u− v‖, 0 < q < 1.

Thus, if
T (ρ+ 1)Rρ ≤ q < 1, (6)
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then Q is a contraction in B(R) in the Banach space XT with the norm ‖ · ‖,
t ∈ [0, T ]. We use the same notations for the norms in XT and in X∞.

We have proved that
For T satisfying (5)- (6) there exists and is unique the solution to (1), and

this solution can be obtained from (3) by iterations.
The problem now is:
Does this solution exist and is unique on R+?
From our proof it follows that if the solution exists and is unique in XT ,

then the solution exists and is unique in XT1 for some T1 > T .
To prove that the solution u(x, t) to (1) exists on R+, assume the con-

trary: this solution does not exist on any interval [0, T1), T1 > T , where T
is the maximal interval of the existence of the continuous solution. Then
limt→T−0 u(x, t) = ∞, because otherwise there is a sequence tn → T − 0 such
that u(x, tn)→ u(x, T ) and one may construct the solution defined on [T, T1],
T1 > T , by using the local existence and uniqueness of the solution to (1) with
the initial value u(x, T ) for t ∈ [T, T1]. This contradicts the assumption that
T is the maximal interval of the existence of the continuous solution u.

Thus, if T < ∞ then one has limt→T−0 u(x, t) = ∞. Let us prove that
this also leads to a contradiction. Then we have to conclude that T =∞ and
Theorem 1 is proved.

We need some estimates. Multiply (1) by u, integrate over R3 with respect
to x, and then integrate by parts the second term. The result is:

0.5
dN(u)

dt
+N(gradu) +

∫
|u|ρ+2dy = 0, (7)

where N(u) :=
∫
u2dy. Integrate (7) with respect to time over [0, T ] and get

0.5N(u(T )) +

∫ T

0

(
N(gradu) +

∫
|u|ρ+2dy

)
dτ = 0.5N(u(0)). (8)

Therefore,

N(u(t)) ≤ c, ∀t ∈ [0, T ],

∫ T

0

N(gradu)dτ ≤ c,

∫ T

0

dτ

∫
|u|ρ+2dy ≤ c,

(9)
where c = 0.5N(u0).

Lemma 1. From (9) and (3) it follows that

‖u(x, t)‖ <∞ ∀t ∈ [0, T ]. (10)

If (10) is proved then T is not the maximal interval of the existence of the
solution to (1). This contradiction proves Theorem 1.
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Proof of Lemma 1. One uses the Hölder inequality twice and gets∫ T

0

dτ

∫
g(x− y, t− τ)|u|ρ+1dy ≤(∫ T

0

dτ

∫
|u|ρ+2dy

)(ρ+1)/(ρ+2)(∫ T

0

dτ

∫
gρ+2dy

)1/(ρ+2)

≤(∫ T

0

dτ

∫
|u|ρ+2dy

)(ρ+1)/(ρ+2)(∫ T

0

dτ

∫
gρ+2dy

)1/(ρ+2)

.

(11)

By the last inequality (9) it follows that
∫ T
0
dτ
∫
|u|ρ+2dy < c ∀T > 0, where

c > 0 is a constant independent of T . The last integral in (11) is also bounded
independently of T . It can be calculated analytically.

Thus, inequalities (11), (9) and equation (3) imply (10).
Lemma 1 is proved. 2

Therefore Theorem 1 is proved. 2

The ideas related to the ones used in this paper were developed and used
in [3]–[5].

References

[1] Lions, J., Quelques methods de resolution des problemes aux limites non
lineaires, Dunod, Paris, 1969.

[2] Ladyzhenskaya, O., et al.,Linear and quasilinear equations of parabolic
type, Transl. of math. monogr., vol. 23, Amer. Math. Soc., Providence
RI, 1968.

[3] Ramm, A. G., Stability of the solutions to evolution problems, Mathe-
matics, 1, (2013), 46-64.

doi:10.3390/math1020046

Open access Journal:

http://www.mdpi.com/journal/mathematics

[4] Ramm, A. G., Large-time behavior of solutions to evolution equations,

Handbook of Applications of Chaos Theory, Chapman and Hall/CRC,
2016, pp. 183-200 (ed. C.Skiadas).

[5] Ramm, A. G., Hoang, N. S., Dynamical Systems Method and Applica-
tions. Theoretical Developments and Numerical Examples. Wiley, Hobo-
ken, 2012.


	Introduction
	Proofs



