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Abstract
Consider the equation
W (1) — At Julu =0, u(0) = uo(x), (1),

where v/ := %, p=const >0,z cR3 t>0.
Assume that ug is a smooth and decaying function,

Juol = sup Ju(z,t)].
zER3 teR L

It is proved that problem (1) has a unique global solution and this
solution satisfies the following estimate

[u(z, )] < e,
where ¢ > 0 does not depend on z, t.
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1 Introduction

Let
, , du
v — Au+ |ulffu=0, u(0)=uy u := s (1)
where p > 0, t € R, = [0,00), z € R®, X is a Banach space of real-valued
functions with the norm |[u(x,t)|| := sup,cgs e, |u(z,t)[. We assume that
Jul| < c. (2)
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We say that u is a global solution to if u exists Vt > 0.

Our result is formulated in Theorem 1. Our method is simple and differs
from the published results, see [I], [2] and references there.

The novel points in this work are:

a) There is no restriction on the upper bound of p.

In [1], (Section 1.1) a nonlinear hyperbolic equation with the same non-
linearity is studied in a bounded domain, uniqueness of the solution is proved
only for p < 2/(n — 2), and existence is proved by a different method. The
contraction mapping theorem is not used.

In [2] the quasi-linear problems for parabolic equations are studied in Chap-
ter 5 in a bounded domain and under the assumptions different from ours.
There are many papers and books on non-linear problems for parabolic equa-
tions (see the bibliography in [I], [2].

b) Existence of the global solution is proved.

¢) Method of the proof differs from the methods in the cited literature.

Our result is formulated in Theorem 1:

Theorem 1. Problem has a unique global solution in X for anyuy € X.

2 Proofs
Let g(z,t) = %. If u solves (1) then
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where f = fRs. Let X be the Banach space of continuous in R3 x R, functions,
Ry = [0,00), ||u| = maxers e |u(z,t)|. If ||u]| < R then ||[A(u)| <
TRP, where the identity [ g(x —y,t—7)dy = 1 was used. From one gets
lull < Tllull”** + | 7. (4)
Thus, @) maps the ball B(R) = {u : ||u]| < R} into itself if T" is such that
TR +||F| < R. ()
The @ is a contraction on B(R) if
1Q(u) = Q)| <T(p+ D) R|lu —vf| <qgllu—vf, 0<g<l.

Thus, if
T(p+ 1R <q<1, (6)



then @ is a contraction in B(R) in the Banach space X7 with the norm || - ||,
t € [0,7]. We use the same notations for the norms in Xt and in X.

We have proved that

For T satisfying — @ there exists and is unique the solution to (1)), and
this solution can be obtained from by iterations.

The problem now is:

Does this solution exist and is unique on R, ?

From our proof it follows that if the solution exists and is unique in X7,
then the solution exists and is unique in X, for some 77 > T

To prove that the solution u(z,t) to exists on R, assume the con-
trary: this solution does not exist on any interval [0,7}), T > T, where T
is the maximal interval of the existence of the continuous solution. Then
limy_,7_gu(x,t) = 0o, because otherwise there is a sequence t,, — 7" — 0 such
that u(z,t,) = u(z,T) and one may construct the solution defined on [T, T}],
Ty > T, by using the local existence and uniqueness of the solution to with
the initial value u(z,T) for ¢ € [T, T;]. This contradicts the assumption that
T is the maximal interval of the existence of the continuous solution w.

Thus, if 7' < oo then one has lim; ,r_qu(z,t) = oo. Let us prove that
this also leads to a contradiction. Then we have to conclude that T" = oo and
Theorem 1 is proved.

We need some estimates. Multiply by u, integrate over R? with respect
to x, and then integrate by parts the second term. The result is:

dN (u)

0.5
dt

+ N(gradu) + / lu|”*2dy = 0, (7)

where N(u) := [u?dy. Integrate with respect to time over [0,7] and get

0.5N (u(T)) +/OT (N(gmdu) +/\u|p+2dy) dr = 0.5N(u(0)).  (8)

Therefore,

T T
N(u(t)) <e, Vtel[0,T], / N(gradu)dr < c, / dT/ lu|2dy < c,
0 0

(9)
where ¢ = 0.5N (up).
Lemma 1. From @ and it follows that

lu(z,t)|| < oo Vte[0,T]. (10)

If is proved then T is not the maximal interval of the existence of the
solution to . This contradiction proves Theorem 1.



Proof of Lemma 1. One uses the Holder inequality twice and gets

T
/ df/g(:v —y,t —7)|uldy <

/(p+2)

T (p+1)/(p+2)
(/ dT/|u\p+2dy) (/ dT/ p+2dy) < (11)
0
T (p+1)/(p+2) /(p+2)
(/ dT/|u|p+2dy) (/ dT/ p+2dy)
0

By the last inequality (9) it follows that fOT dr [ |ulf*?dy < ¢ VT > 0, where
¢ > 0 is a constant independent of T'. The last integral in is also bounded
independently of T'. It can be calculated analytically.

Thus, inequalities , @ and equation imply .

Lemma 1 is proved. O
Therefore Theorem 1 is proved. O
The ideas related to the ones used in this paper were developed and used

in [3]-[5].
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