Improved Newton-Raphson Methods for Solving Nonlinear Equations
DOI:
https://doi.org/10.24297/jam.v13i5.6533Keywords:
Newton-Raphson method, Nonlinear equations, Iterative method, Order of convergenceAbstract
In this paper, we mainly study the numerical algorithms for simple root of nonlinear equations based on Newton-Raphson method. Two modified Newton-Raphson methods for solving nonlinear equations are suggested. Both of the methods are free from second derivatives. Numerical examples are made to show the performance of the presented methods, and to compare with other ones. The numerical results illustrate that the proposed methods are more efficient and performs better than Newton-Raphson method.
Downloads
References
[2] Potra, F.A., Potra-Pták. 1984. Nondiscrete induction and iterative processes, Research Notes in Mathematics, Vol. 103, Pitman, Boston.
[3] Chun, C. B. 2006. A new iterative method for solving nonlinear equations, Appl. Math. Comput. 178, p. 415-422.
[4] Fang, L., He, G. P., and Hu, Z. Y. 2008. A cubically convergent Newton-type method under weak conditions, J. Comput. Appl. Math. 220, p. 409-412.
[5] Kou, J. S. 2007. The improvements of modified Newton's method, Appl. Math. Comput. 189, p. 602-609.
[6] Abbasbandy, S. 2003. Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput. 145, p. 887–893.
[7] Fang, L. and He G. P. 2009. Some modifications of Newton's method with higher-order convergence for solving nonlinear equations, J. Comput. Appl. Math. 228, p. 296-303.
[8] Chun, C. B. 2008. A simply constructed third-order modifications of Newton's method, J. Comput. Appl. Math. 219, p. 81-89.
[9] Fang, L., Sun, L. and He G. P. 2008. An efficient Newton-type method with fifth-order for solving nonlinear equations, Comput. Appl. Math. 27, p. 269-274.
[10] Grau, M. and Diaz-Barrero, J.L. 2006. An improvement to Ostrowski root-finding method, Appl. Math. Comput. 173 , p. 450-456.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.