Nano Crystallites and Clustered Species in Modified Sodium Telluride Glasses
DOI:
https://doi.org/10.24297/jap.v14i2.7523Keywords:
Crystalline species, Clustered phases, Spectroscopy, GlassesAbstract
The structural properties, crystalline and clustering behavior of xNa2O·(1-x)TeO2 (15 £ x £ 65 mol% glasses have been investigated by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM ). The experimental results have demonstrated that the basic structural units in telluride glasses change from highly strained TeO4 trigonal bipyramids to more regular TeO3 units containing non bridging oxygen atoms (NBO). The concentration of NBO atoms in telluride network increases with increasing? Na2O content. The present results suggest that (NBO) atoms in telluride glasses exist in their pure form in glasses of up to 35 mol% Na2O. But at higher Na2O concentrations, NBO atoms do not exist in their pure form; that is, the majority of NBO atoms are coordinated with high concentration from Na cations to form nano-crystalline clusters. The results based on X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calomerty (DSC) reveal the presence of two crystalline phases: ? TeO2 and Na2Te4O9 phases during the crystallization process of the prepared glass in the region < 50 mol% Na2O. But at higher Na2O concentrations, Na2Te2O5 and NaTeO3 crystalline clustered phase in the nono size scale are the dominant type. This means that NBO in TeO3 trigonal pyramids will interact with the excess of Na cation resulting in the three-dimensional network containing nano size clusters particularly in telluride glasses containing 50 and 65 mol% Na2O. An increase in Na2O concentration in Na2O-rich telluride network results in increasing Na coordination instead of breaking more tellurium–oxygen bonds.
Downloads
References
A Santic, A Mogus-Milankovi , K Furic ,M Rajik-Linarik,Chandra S. Ray, and D E. Day, CROATICA CHEMICA ACTA,CCACAA 81 (4) 559-567 (2008)
E R.Barney, A C.Hannon, D Holland, N Umesaki M Tatsumisago, Journal of Non-Crystalline Solids, Volume 414, 15 (2015) 33-41
[ A Kaur, A Khanna, M Gonzále-Barriuso, F González,, B Chen, Journal of Non-Crystalline Solids Volume 470, ( 2017)14-18
G El-Damrawi, K Abdelnur and R M Ramadan, Silicon 2 (2018)1-6
T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa J. Non crystalline Solids 128 (1992).
T Sekiya ,N Mochida, A Soejima, Journal of Non-Crystalline Solids Volume 191, 1–2, (1995) 115-123
C. McLaughlin, S. L. Tagg, and J. W. Zwanziger, Glasses J. Phys. Chem. B, 2001, 105 (1), pp 67–75
M N. Garaga, U. Werner-Zwanziger, J. W. Zwanziger , A. De Ceanne, B. Hauke K. Bozer‡, and S. Feller, Journal of Physical Chemistry C 2017 121 (50), 28117-28124
G El-Damrawi, AK Hassan, S Ehmead, A El Shahawy, New Journal of Glass and Ceramics 7 (02), 22
T Uchino, T Yoko, ,Journal of Non-Crystalline Solids 204 (1996) 243-252
S. L. Tagg, J. C. Huffman, and J.W. Zwanziger, Chem. Mater. 6 (1994) 1884–1889.
S. L. Tagg, J. C. Huffman, and J.W. Zwanziger, Acta Chem. Scand. 51 (1997) 118–121.
K.D. Dobbs and W.J. Hehre, J. Comput. Chem. 7 (1986) 359, and references therein.
A karamanov and M Pelino, j.of European Ceramic Sociaty 19(1999) 649].
M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.W. Gill, M.W. Wong, J.B. Foresman, B.G. Johnson, H.B. Schlegel, M.A. Robb, E.S. Replogle, R. Gomperts, J.L Andres, K. Raghavachari, J.S. Binkley, C. Gonzalez, R.L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart and J.A. Pople, Gaussian 92, Revision C (Gaussian, Pittsburgh, PA, 1992).
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.