Rosen-Chambers Variation Theory of Linearly-Damped Classic and Quantum Oscillator

Authors

  • Vincze Gy. Szasz A. Department of Biotechnics, St.Istvan University, Godollo, Hungary

DOI:

https://doi.org/10.24297/jap.v4i1.6966

Keywords:

variation-theory, damped-oscillator, quantum-oscillator

Abstract

Phenomena of damped harmonic oscillator is important in the description of the elementary dissipative processes of linear responses in our physical world. Its classical description is clear and understood, however it is not so in the quantum physics, where it also has a basic role. Starting from the Rosen-Chambers restricted variation principle a Hamilton like variation approach to the damped harmonic oscillator will be given. The usual formalisms of classical mechanics, as Lagrangian, Hamiltonian, Poisson brackets, will be covered too. We shall introduce two Poisson brackets. The first one has only mathematical meaning and for the second, the so-called constitutive Poisson brackets, a physical interpretation will be presented. We shall show that only the fundamental constitutive Poisson brackets are not invariant throughout the motion of the damped oscillator, but these show a kind of universal time dependence in the universal time scale of the damped oscillator. The quantum mechanical Poisson brackets and commutation relations belonging to these fundamental time dependent classical brackets will be described. Our objective in this work is giving clearer view to the challenge of the dissipative quantum oscillator.

Downloads

Download data is not yet available.

References

Bateman, H. 1931. On Dissipative Systems and Related Variational Principles. Phys. Rev. 38, p. 815

Feynman, R.P, Vernon, F.L. 1963. The Theory of a General Quantum System Interacting with a Linear Dissipative System, Ann. Phys. 24:118-173

Weiss, U. 2008. Quantum Dissipative Systems, 3rd edition (Singapore: World Scientific)

Ingold, G.L. 2012. Thermodynamic anomaly of the free damped quantum particle: the bath perspective, Eur. Phys. J. B 85 30

Philbin, T. G. 2012. Quantum dynamics of the damped harmonic oscillator New J. Phys. 14, 083043

Chung-In, Um et al. 2002. The quantum damped harmonic oscillator. Physics Reports 63-192

Caldirola, P. 1941. Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393

Kanai, E. 1948. On the Quantization of the Dissipative Systems. Prog. Theor. Phys. 3, 440

Cadirola, P. 1983. Quantum theory of nonconservative systems. Nuovo Cimento B 04/1983; 77(2):241-262

Ullersma, P. 1966. An exactly solvable model for Brownian motion. Physica 23, 27, 56, 74, 90

Caldeira, A. O. and Leggett, A. J. 1981. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214

Ford, G. W. and O’Connell R. F. 1996. There is No Quantum Regression Theorem. Physical Review Letters 29, 4001, vol. 77, Number 5

Onsager, L. 1931. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 38, 2265

Rosen, P. 1954. Use of Restricted Variational Principles for the Solution of Differential Equations. Journal of Applied Physics, vol. 25, 3, p.336

Rosen, P. 1953. On Variational Principles for Irreversible Processes, J. Chem. Phys. 21, p. 1220-1221

Chambers, L. 1956. A Variational Principle for the Conduction of Heat. Quart. J. Mech. Appl. Math., vol. 9, p. 234

Goldstein, H. 1981. Classical Mechanics. 2. edition, Addison Wesley, Cambridge, Massachusets

Hall, Jr. 1959. Theory of Groups. MacMillan, New York

Bohlin K. 1911. Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps, Bull. Astr., 28:144

A. Nersessian, V. Ter-Antonyan,, M.Tsulaia. 1996. Mod.Phys.Lett. A11:1605-1611

Gettys, E., Ray, J., Breitenberger E. 1981. Bohlin’s and other integrals for the damped harmonic oscillator. American Journal of Physics 49 p. 162-164

Hilgevoord, J. 2005. Time in quantum mechanics: a story of confusion. Studies in History and Philosophy of Modern Physics 36, 29–60

Pauli, W. 1933. Die Allgemeine Prinzipien der Wellenmechanik. In Handbuch der Physik, 2. Auflage, Band 24., 1. Teil (pp. 83–272), Springer-Verlag Berlin

Pauli, W. 1958. Die Allgemeine Prinzipien der Wellenmechanik. In Handbuch der Physik, Band 5., Teil 1. (pp. 1–168), Springer-Verlag Berlin

Pauli, W. 1980. General principles of quantum mechanics (translated by P. Achuthan and K. Venkatesan). Berlin: Springer

Medvedev, B. 1977. Higher Theoretical Physics (in Russian), Nauka, Moskva

Fitzpatrick, R. 2010. Quantum Mechanics. E-book, Lulu Publisher

Dirac, P.A.M. 1930. Quantum Mechanics. Oxford: Clarendon Press

Liboff, R. 2002. Introductory Quantum Mechanics (4th edition ed.). Addison-Wesley

Griffiths, D. 2004. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall

Van Kampen, N.G. 2004. Stochastic Processes in Physics an Chemistry.Elsevier

Weisskopf, V. and Wigner, E. 1930. Berechnungen der Natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Zs.f. Phys., 63, p. 54-73

Heitler, W. 1954. The Quantum Theory of Radiations. Oxford, at the Clarendon Press

Dekker, H. 1981. Classical and quantum mechanics of the damped harmonic oscillator. Physics Reports 80, 1 [35] Dirac, P.A.M. 1927. The Quantum Theory of the Emission and Absorption of Radiation. Proc. Roy. Soc., A 114, 243

Fong, P. 1961. Representation of the commutation relations. Am. J. Phys. 29, 852

Fong, P. 1962. Elementary Quantum Mechanics. Adison Wesley, Reading, Massachusetts

Downloads

Published

2014-03-12

How to Cite

Szasz A., V. G. (2014). Rosen-Chambers Variation Theory of Linearly-Damped Classic and Quantum Oscillator. JOURNAL OF ADVANCES IN PHYSICS, 4(1), 404–426. https://doi.org/10.24297/jap.v4i1.6966

Issue

Section

Articles