Rosen-Chambers Variation Theory of Linearly-Damped Classic and Quantum Oscillator
DOI:
https://doi.org/10.24297/jap.v4i1.6966Keywords:
variation-theory, damped-oscillator, quantum-oscillatorAbstract
Phenomena of damped harmonic oscillator is important in the description of the elementary dissipative processes of linear responses in our physical world. Its classical description is clear and understood, however it is not so in the quantum physics, where it also has a basic role. Starting from the Rosen-Chambers restricted variation principle a Hamilton like variation approach to the damped harmonic oscillator will be given. The usual formalisms of classical mechanics, as Lagrangian, Hamiltonian, Poisson brackets, will be covered too. We shall introduce two Poisson brackets. The first one has only mathematical meaning and for the second, the so-called constitutive Poisson brackets, a physical interpretation will be presented. We shall show that only the fundamental constitutive Poisson brackets are not invariant throughout the motion of the damped oscillator, but these show a kind of universal time dependence in the universal time scale of the damped oscillator. The quantum mechanical Poisson brackets and commutation relations belonging to these fundamental time dependent classical brackets will be described. Our objective in this work is giving clearer view to the challenge of the dissipative quantum oscillator.
Downloads
References
Bateman, H. 1931. On Dissipative Systems and Related Variational Principles. Phys. Rev. 38, p. 815
Feynman, R.P, Vernon, F.L. 1963. The Theory of a General Quantum System Interacting with a Linear Dissipative System, Ann. Phys. 24:118-173
Weiss, U. 2008. Quantum Dissipative Systems, 3rd edition (Singapore: World Scientific)
Ingold, G.L. 2012. Thermodynamic anomaly of the free damped quantum particle: the bath perspective, Eur. Phys. J. B 85 30
Philbin, T. G. 2012. Quantum dynamics of the damped harmonic oscillator New J. Phys. 14, 083043
Chung-In, Um et al. 2002. The quantum damped harmonic oscillator. Physics Reports 63-192
Caldirola, P. 1941. Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393
Kanai, E. 1948. On the Quantization of the Dissipative Systems. Prog. Theor. Phys. 3, 440
Cadirola, P. 1983. Quantum theory of nonconservative systems. Nuovo Cimento B 04/1983; 77(2):241-262
Ullersma, P. 1966. An exactly solvable model for Brownian motion. Physica 23, 27, 56, 74, 90
Caldeira, A. O. and Leggett, A. J. 1981. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214
Ford, G. W. and O’Connell R. F. 1996. There is No Quantum Regression Theorem. Physical Review Letters 29, 4001, vol. 77, Number 5
Onsager, L. 1931. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 38, 2265
Rosen, P. 1954. Use of Restricted Variational Principles for the Solution of Differential Equations. Journal of Applied Physics, vol. 25, 3, p.336
Rosen, P. 1953. On Variational Principles for Irreversible Processes, J. Chem. Phys. 21, p. 1220-1221
Chambers, L. 1956. A Variational Principle for the Conduction of Heat. Quart. J. Mech. Appl. Math., vol. 9, p. 234
Goldstein, H. 1981. Classical Mechanics. 2. edition, Addison Wesley, Cambridge, Massachusets
Hall, Jr. 1959. Theory of Groups. MacMillan, New York
Bohlin K. 1911. Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps, Bull. Astr., 28:144
A. Nersessian, V. Ter-Antonyan,, M.Tsulaia. 1996. Mod.Phys.Lett. A11:1605-1611
Gettys, E., Ray, J., Breitenberger E. 1981. Bohlin’s and other integrals for the damped harmonic oscillator. American Journal of Physics 49 p. 162-164
Hilgevoord, J. 2005. Time in quantum mechanics: a story of confusion. Studies in History and Philosophy of Modern Physics 36, 29–60
Pauli, W. 1933. Die Allgemeine Prinzipien der Wellenmechanik. In Handbuch der Physik, 2. Auflage, Band 24., 1. Teil (pp. 83–272), Springer-Verlag Berlin
Pauli, W. 1958. Die Allgemeine Prinzipien der Wellenmechanik. In Handbuch der Physik, Band 5., Teil 1. (pp. 1–168), Springer-Verlag Berlin
Pauli, W. 1980. General principles of quantum mechanics (translated by P. Achuthan and K. Venkatesan). Berlin: Springer
Medvedev, B. 1977. Higher Theoretical Physics (in Russian), Nauka, Moskva
Fitzpatrick, R. 2010. Quantum Mechanics. E-book, Lulu Publisher
Dirac, P.A.M. 1930. Quantum Mechanics. Oxford: Clarendon Press
Liboff, R. 2002. Introductory Quantum Mechanics (4th edition ed.). Addison-Wesley
Griffiths, D. 2004. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall
Van Kampen, N.G. 2004. Stochastic Processes in Physics an Chemistry.Elsevier
Weisskopf, V. and Wigner, E. 1930. Berechnungen der Natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Zs.f. Phys., 63, p. 54-73
Heitler, W. 1954. The Quantum Theory of Radiations. Oxford, at the Clarendon Press
Dekker, H. 1981. Classical and quantum mechanics of the damped harmonic oscillator. Physics Reports 80, 1 [35] Dirac, P.A.M. 1927. The Quantum Theory of the Emission and Absorption of Radiation. Proc. Roy. Soc., A 114, 243
Fong, P. 1961. Representation of the commutation relations. Am. J. Phys. 29, 852
Fong, P. 1962. Elementary Quantum Mechanics. Adison Wesley, Reading, Massachusetts
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.