Nambu-Goto Strings viaWeierstrass Representation

Authors

  • Mahmoud kotb

DOI:

https://doi.org/10.24297/jap.v13i6.6245

Abstract

A description of string model of gauge theory are related to minimal surfaces. notations of minimal surface and related mean and Gauss curvature discussed. The Weierstrass representation for a surface conformally which immersed in R used to represent Nambu- Goto action, action of Nambu Goto is calculated usingWeierstrass representation which can be used to calculate the Partion Function and potential, then a non-perturbative solution for action is aimed and fulfilled and a consequences of that are investigated and its mathematical and physical properties are discussed.

Downloads

Download data is not yet available.

References

1. Eddington A. S. The mathematical theory of relativity. Cambridge University Press, Cambridge, 1924.
2. Bondi H. Negative mass in General Relativity. Review of Modern Physics, 1957, v. 29 (3), 423–428.
3. Pezzaglia W. Physical applications of generalized Cliord Calculus: Papatetrou equations and metamorphic curvature. arXiv: grqc/9710027.
4. Lambiase G., Papini G., Scarpetta G. Maximal acceleration corrections to the Lamb shift of one electron atoms. Nuovo Cimento, v. B112, 1997, 1003. arXiv: hep-th/9702130.
5. A. M. Polyakov, “Fine Structure of Strings,” Nucl. Phys. B 268 (1986) 406. doi:10.1016/0550-3213(86)90162-8
6. V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, “Fractal Structure of 2D Quantum Gravity,” Mod. Phys. Lett. A 3, 819 (1988). doi:10.1142/S0217732388000982
7. R. Parthasarathy and K. S. Viswanathan, “A Realization of W gravities in the conformal gauge through generalized Gauss maps,” Int. J. Mod. Phys. A 7, 317 (1992). doi:10.1142/S0217751X92000193
8. M. Caselle, R. Fiore, F. Gliozzi, P. Guaita and S. Vinti, “On the behavior of spatial Wilson loops in the high temperature phase of LGT,” Nucl. Phys. B 422, 397 (1994) doi:10.1016/0550-3213(94)00147-2 [hep-lat/9312056].
9. M. Caselle, F. Gliozzi, U. Magnea and S. Vinti, “Width of long color flux tubes in lattice gauge systems,” Nucl. Phys. B 460, 397 (1996) doi:10.1016/0550-3213(95)00639-7 [hep-lat/9510019].
10. M. Luscher and P. Weisz, “Quark confinement and the bosonic string,” JHEP 0207, 049 (2002) doi:10.1088/1126-6708/2002/07/049 [heplat/0207003].
11. B. G. Konopelchenko and G. Landolfi, “Quantum eects for extrinsic geometry of strings via the generalized Weierstrass representation,”
Phys. Lett. B 444, 299 (1998) doi:10.1016/S0370-2693(98)01412-9 [hep-th/9810209].
12. Elsa Abbena, Simon Salamon, Alfred Gray, “Modern Dierential Geometry of Curves and Surfaces with Mathematica,”.

Downloads

Published

2017-07-19

How to Cite

kotb, M. (2017). Nambu-Goto Strings viaWeierstrass Representation. JOURNAL OF ADVANCES IN PHYSICS, 13(6), 4985–4992. https://doi.org/10.24297/jap.v13i6.6245

Issue

Section

Articles