On the existence of a bounded variation solution of a fractional integral equation in L1[0, T] due to the spread of COVID 19

Authors

  • Wagdy G. El-Sayed Department of mathematics and computer science Faculty of Science, Alexandria University, Alexandria, Egypt
  • Ragab O. Abd El-Rahman Department of mathematics, Faculty of Science , Damanhour Universty, Damanhour, Egypt
  • Sheren A. Abd El-Salam Department of mathematics, Faculty of Science , Damanhour Universty, Damanhour, Egypt
  • Asmaa A. El Shahawy Department of mathematics, Faculty of Science , Damanhour Universty, Damanhour, Egypt

DOI:

https://doi.org/10.24297/jam.v21i.9254

Keywords:

Darbo fixed point theorem, Functions of bounded variation, Hausdorff measure of noncompactness, Fractional calculus, Nemytskii operator

Abstract

In this article, we will investigate the existence and uniqueness of a bounded variation solution for a fractional integral equation in the space L1[0, T] of Lebesgue integrable functions.

Downloads

Download data is not yet available.

References

A. Angurai, M. L. Maheswari, Existence of solutions for fractional impulsive neutral functional infinite delay integro differential equations with nonlocal conditions, J. Nonlinear sci. Appl. 5 (2012).

J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.

J. Banas and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1) (1992), 133-151.

J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math. 60, M. Dekker, New york and Basel 1980.

D. Bugajewski, On BV-solutions of some nonlinear integral equations,Integral Equations and Operator Theory, vol. 46, no. 4, pp. 387-398, 2003.

G. Darbo, Punti untiti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padora 24 (1955) 84-92.

F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum. 21 (1977), 259–262.

M. M. El-Borai, W. G. El-Sayed & F. N. Ghaffoori, On the solvability of nonlinear integral functional equation, Inter. J. Math. Tren. & Tech. (IJMTT), Vol. 34, No. 1, June 2016, 39-44.

M. M. El-Borai, W. G. El-Sayed & F. N. Ghaffoori, Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type, Aryabhatta J. M. & Inform., Vol. 08, Iss.-02, (Jul.-Dec. 2016), 1-15.

M. M. El-Borai, W. G. El-Sayed, A. M. Moter, Continuous Solutions of a Quadratic Integral Equation, Inter. J. Life Science and Math. (IJLSM), Vol. 2 (5)-4, (2015), 21-30.

M. M. El-Borai, W. G. El-Sayed & R. M. Bayomi, Solvability of non-linear integro-differential equation, Inter. J. Sc. & Eng. Res., Vol. 10, Issu. 7, July-2019, ISSN 2229-5518, pp. 1085-1093.

W. G. El-Sayed, Nonlinear functional integral equations of convolution type, Portugaliae Mathematica 54 (4) (1997) 449-456.

W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the existence of continuous solutions of a nonlinear quadratic fractional integral equation, J. Adv. Math. (JAM), Vol 18 (July, 2020) ISSN: 2347-1921, 14-25.

W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the solvability of a nonlinear functional integral equations via measure of noncompactness in LP (RN), J. Adv. Math. (JAM), Vol 19 (2020) ISSN: 2347-1921, 74-88.

W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, An existence theorem for a nonlinear integral equation of Urysohn type in LP (RN), Adv. Math. Sci. J. 9 (2020), no. 11, ISSN: 1857-8365, 9995-10005.

W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On Monotonic Solutions of Nonlinear Quadratic Integral Equation of Convolution Type, Case Studies J., ISSN (2305-509X)- Vol. 9, Issue 10-oct-2020, 78-87.

W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Bounded variation solutions of a functional integral equation in L1(R+), Int. J. Mech. Eng., ISSN: 0974-5823, Vol. 7 No. 2 February 2022, 2600-2605.

I. Podlubny and A. M. A. El-Sayed, On two defintions of fractional derivative, Preprint UEF-03-96, Slovak Acedemy of Sciences, Institute of Experimental Physics 1996.

S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of Transmission dynamics of Covid-19 mathematical model under ABC fractional order derivative, J. Results in physics 2020. oi.10.1016/j.rinp.2020.103507.

Downloads

Published

2022-07-29

How to Cite

El-Sayed, W. G. ., Abd El-Rahman, R. O., Abd El-Salam, S. A., & El Shahawy, A. A. . (2022). On the existence of a bounded variation solution of a fractional integral equation in L1[0, T] due to the spread of COVID 19. JOURNAL OF ADVANCES IN MATHEMATICS, 21, 107–115. https://doi.org/10.24297/jam.v21i.9254

Issue

Section

Articles

Most read articles by the same author(s)