On the existence of a bounded variation solution of a fractional integral equation in $L_{1}[0, T]$ due to the spread of COVID 19

Wagdy G. El-Sayed ${ }^{1}$, Ragab O. Abd El-Rahman ${ }^{2}$, Sheren A. Abd El-Salam ${ }^{3}$, Asmaa A. El Shahawy ${ }^{4}$
${ }^{1}$ Department of mathematics and computer science Faculty of Science, Alexandria University, Alexandria, Egypt
${ }^{2,3,4}$ Department of mathematics, Faculty of Science, Damanhour Universty, Damanhour, Egypt
${ }^{1}$ wagdygoma@alexu.edu.eg, ${ }^{2}$ dr.ragab@sci.dmu.edu.eg, ${ }^{3}$ shrnahmed@yahoo.com, ${ }^{4}$ asmaashahawy91@yahoo.com

Abstract

In this article, we will investigate the existence and uniqueness of a bounded variation solution for a fractional integral equation in the space $L_{1}[0, T]$ of Lebesgue integrable functions.

Keywords: Nemytskii operator, Fractional calculus, Hausdorff measure of noncompactness, Functions of bounded variation, Darbo fixed point theorem.

1 Introduction

In investigating the problem of the spread of covid-19, some scientists such as Sabri T.M. Thabet, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad [19] reached to an integral equation

$$
\begin{equation*}
x(t)=g(t)+\frac{1-\alpha}{N(\alpha)} f(t, x(t))+\lambda \int_{0}^{t}(t-s)^{(\alpha-1)} f(s, x(s)) d s, \quad 0<\alpha \leq 1, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

that reduced from a system of differential equations in the operation of dynamical mathematical modeling.
This paper studies the existence of at least one solution of this fractional integral equation in the space $L_{1}[0, T]$ of functions of bounded variation.

2 Preliminaries

This section is devoted to recall some notations and results that will be needed in the sequel. Denote by $L_{1}=L_{1}[0, T]$ the space of Lebesgue integrable functions on the interval $[0, T]$, with the standard norm

$$
\|x\|=\int_{0}^{T}|x(t)| d t, \quad x \in L_{1}
$$

The most important operator in nonlinear functional analysis is the so-called Nemytskii operator ([2], [8], [9]).

Definition 2.1 If $f(t, x)=f: I \times R \rightarrow R$ satisfies Carathéodory conditions i.e. it is measurable in t for any $x \in R$ and continuous in x for almost all $t \in[0, T]$. Then to every function $x(t)$ being measurable on $[0, T]$ we may assign the function

$$
(F x)(t)=f(t, x(t)) \quad t \in I
$$

The operator F is called the Nemytskii (or superposition) operator generated by f.

Furthermore, we propose a theorem which gives necessary and sufficient condition for the Nemytskii operator to map the space L_{1} into itself continuously.

Theorem 2.1 ([2], [16]) If f satisfies Carathéodory conditions, then the Nemytskii operator F generated by the function f maps continuously the space L_{1} into itself if and only if

$$
|f(t, x)| \leq a(t)+b|x|
$$

for every $t \in[0, T]$ and $x \in R$, where $a(t) \in L_{1}$ and $b \geq 0$ is a constant.

Definition 2.2 ([4], [11], [17])

The Hausdorff measure of noncompactness $\chi(X)$ (see also [10], [12]) is defined as

$$
\chi(X)=\inf \left\{r>0: \text { there exists a finite subset } Y \text { of } E \text { such that } x \subset Y+B_{r}\right\} .
$$

It is worthwhile to mention that the first important example of measure of weak noncompactness has been defined by De Blasi [7] by:

$$
\beta(X)=\inf \left\{r>0: \text { there exists a weakly compact subset } W \text { of } E \text { such that } x \subset W+B_{r}\right\} .
$$

Let us recall that there exists a formula allowing us to express De Blasi measure of weak noncompactness in the space L_{1}. This formula has been recently given by Appell and De Pascale [3]:

$$
\begin{equation*}
\beta(X)=\lim _{\varepsilon \rightarrow 0}\left\{\sup _{x \in X}\left\{\sup \left[\int_{D}|x(t)| d t: D \subset I, \operatorname{meas}(D) \leq \varepsilon\right]\right\}\right\} \tag{2}
\end{equation*}
$$

The Hausdorff measure of noncompactness χ and De Blasi measure of weak noncompactness β are related by the following theorem:

Theorem 2.2 [3]

Let X be an arbitrary nonempty and bounded subset of $L_{1}[0, T]$. If X is compact in measure then $\beta(X)=\chi(X)$.

Now, we give Darbo fixed point theorem (cf.[6], [14], [15]).

Theorem 2.3 Let $Q \subset E$ be nonempty, bounded, closed and convex and assume that $A: Q \rightarrow Q$ is a continuous transformation which is a contraction with respect to the measure of noncompactness μ, i.e. $\exists a$ constant $k \in[0,1)$ where

$$
\mu(A X) \leq k \mu(X)
$$

for any nonempty subset X of Q. Then A has at least one fixed point in the set Q.

In the sequel, we give a short note about the fractional calculus.

Definition 2.3 (Riemman-Liouville) ([1], [13])
Let $f \in L_{1}[a, b], \quad \alpha \in R^{+}$. The Riemman-Liouville ($R-L$) fractional integral of the function f of order α is defined as

$$
I_{a}^{\alpha} f(t)=\int_{a}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) d s, \alpha>0, a \leq t \leq b
$$

Definition 2.4 [18] Let g be an absolutely continuous function on $[a, b]$. Then the fractional derivative of order $\alpha \in(0,1]$ of g is defined as

$$
D_{a}^{\alpha} g(t)=I_{a}^{1-\alpha} D g(t), \quad D=\frac{d}{d t}
$$

Definition 2.5 (Functions of bounded variation) ([5], [17])
Let $x:[a, b] \rightarrow R$ be a function. For each partition $P: a=t_{0}<t_{1}<\ldots<t_{n}=b$ of the interval $[a, b]$, we define

$$
\operatorname{Var}(x,[a, b])=\sup \sum_{i=1}^{n}\left|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right|
$$

where the supremum is taken over the interval $[a, b]$. If $\operatorname{Var}(x)<\infty$, we say that x has bounded variation and we write $x \in B V$.
We denote by $B V=B V[a, b]$ the space of all functions of bounded variation on $[a, b]$.

Theorem 2.4 [3] Assume that $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv X (convex hull of X) and \bar{X} are of the same type.

Corollary 2.1 [3] Let $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv X is also such.

Next, we will have the following theorem, which we will further use (cf. [3]).

Theorem 2.5 Let X be a bounded subset of $L_{1}[0, T]$ of locally generalized bounded variation. If, in addition, for some $t_{0} \in[0, T]$ the set $X\left(t_{0}\right)=\left\{x\left(t_{0}\right): x \in X\right\}$ is bounded, then every sequence $\left\{x_{n}\right\} \subset X$ contains a subsequence which converges on $[0, T]$ to a function of locally bounded variation.

3 Main result

We can write (1) in operator form as

$$
A x=g(t)+\frac{1-\alpha}{N(\alpha)} F x+\lambda I^{\alpha}(F x)
$$

where $(F x)=f(t, x)$ and $I^{\alpha} x(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} x(s) d s$.

We will treat equation (1) under the following assumptions listed below:
(i) $g \in L_{1}[0, T]$ and is of locally generalized bounded variation on $[0, T]$.
(ii) $f:[0, T] \times R \rightarrow R$ satisfies Carathéodory conditions and there exist a function $a \in L_{1}[0, T]$ and a constant $b \geq 0$ such that

$$
|f(t, x)| \leq a(t)+b|x|, \quad \text { for all } t \in[0, T] \text { and } x \in R .
$$

(iii) there exists a constant $k>0$ such that

$$
|f(t, x)-f(t, y)| \leq k|x-y| .
$$

Moreover, there exists a constant $M>0$ such that for every $n \in N$, every partition $0=t_{0}<t_{1}<\ldots<t_{n}=T$, the following inequality holds:

$$
\sum_{i=1}^{n}\left|f\left(t_{i}, x_{i-1}\right)-f\left(t_{i-1}, x_{i-1}\right)\right| \leq M
$$

(iv) $b\left(\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right)<1$.

Theorem 3.1 Let the hypotheses (i)-(iv) be satisfied, then equation (1) has at least one solution $x \in L_{1}[0, T]$ which is a function of locally bounded variation on $[0, T]$.

Proof. Taking an arbitrary $x \in L_{1}[0, T]$, depending on assumption (ii) and Theorem 2.1 it is easy to see that $A x \in L_{1}[0, T]$. Now, for $x \in B_{r}$ and by our assumptions, we have

$$
\begin{aligned}
\|A x\| & =\int_{0}^{T}\left|g(t)+\frac{1-\alpha}{N(\alpha)} f(t, x(t))+\lambda \int_{0}^{t}(t-s)^{\alpha-1} f(s, x(s)) d s\right| d t \\
& \leq \int_{0}^{T}|g(t)| d t+\frac{1-\alpha}{N(\alpha)} \int_{0}^{T}|f(t, x(t))| d t+\int_{0}^{T} \int_{0}^{t}(t-s)^{\alpha-1}|f(s, x(s))| d s d t \\
& \leq\|g\|+\frac{1-\alpha}{N(\alpha)} \int_{0}^{T}[a(t)+b|x(t)|] d t+\lambda \int_{0}^{T} \int_{s}^{T}(t-s)^{\alpha-1}[a(s)+b|x(s)|] d t d s \\
& \leq\|g\|+\frac{1-\alpha}{N(\alpha)}[\|a\|+b\|x\|]+\left.\lambda \frac{(t-s)^{\alpha}}{\alpha}\right|_{s} ^{T} \cdot \int_{0}^{T}[a(s)+b|x(s)|] d s \\
& \leq\|g\|+\frac{1-\alpha}{N(\alpha)}[\|a\|+b\|x\|]+\frac{\lambda(T-s)^{\alpha}}{\alpha}[\|a\|+b\|x\|] \\
& \leq\|g\|+\|a\|\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right]+b\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right]\|x\| \\
& \leq\|g\|+\|a\|\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right]+b\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right] r \\
& \leq r .
\end{aligned}
$$

From the above estimate, the operator $A: B_{r} \rightarrow B_{r}$, where

$$
r=\frac{\|g\|+\|a\|\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right]}{1-b\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda T^{\alpha}}{\alpha}\right]}>0
$$

Next, let us choose an $x \in B_{r}$. Observe that

$$
\begin{align*}
|(A x)(0)| & =\left|g(0)+\frac{1-\alpha}{N(\alpha)} f(0, x(0))\right| \\
& \leq|g(0)|+\frac{1-\alpha}{N(\alpha)}|f(0, x(0))| \\
& <\infty \tag{3}
\end{align*}
$$

So we get that all functions belonging to $A B_{r}$ are bounded at $t=0$.
Moreover, fix $T>0$ and assume that the sequence t_{i} such that $0=t_{0}<t_{1}<t_{2} \ldots<t_{n}=T$. Then, using the above
assumptions leads us to

$$
\begin{align*}
& \sum_{i=1}^{n}\left|(A x)\left(t_{i}\right)-(A x)\left(t_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right| \\
& +\frac{1-\alpha}{N(\alpha)} \sum_{i=1}^{n}\left|f\left(t_{i}, x\left(t_{i}\right)\right)-f\left(t_{i-1}, x\left(t_{i-1}\right)\right)\right| \\
& +\lambda \sum_{i=1}^{n}\left|\int_{0}^{t_{i}}\left(t_{i}-s\right)^{\alpha-1} f(s, x(s)) d s-\int_{0}^{t_{i-1}}\left(t_{i-1}-s\right)^{\alpha-1} f(s, x(s)) d s\right| \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)} \sum_{i=1}^{n}\left|f\left(t_{i}, x\left(t_{i}\right)\right)-f\left(t_{i}, x\left(t_{i-1}\right)\right)\right| \\
& +\frac{1-\alpha}{N(\alpha)} \sum_{i=1}^{n}\left|f\left(t_{i}, x\left(t_{i-1}\right)\right)-f\left(t_{i-1}, x\left(t_{i-1}\right)\right)\right| \\
& +\lambda \sum_{i=1}^{n}\left|\int_{0}^{t_{i}}\left(t_{i}-s\right)^{\alpha-1} f(s, x(s)) d s-\int_{0}^{t_{i}}\left(t_{i-1}-s\right)^{\alpha-1} f(s, x(s)) d s\right| \\
& +\lambda \sum_{i=1}^{n}\left|\int_{0}^{t_{i}}\left(t_{i-1}-s\right)^{\alpha-1} f(s, x(s)) d s-\int_{0}^{t_{i-1}}\left(t_{i-1}-s\right)^{\alpha-1} f(s, x(s)) d s\right| \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}\left[k \sum_{i=1}^{n}\left|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right|+M\right] \\
& +\lambda \sum_{i=1}^{n} \int_{0}^{t_{i}}\left|\left(t_{i}-s\right)^{\alpha-1}-\left(t_{i-1}-s\right)^{\alpha-1}\right||f(s, x(s))| d s \\
& +\lambda \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left|\left(t_{i-1}-s\right)^{\alpha-1}\right||f(s, x(s))| d s \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[\mid-\left(t_{i}-s\right)^{\alpha}+\left(t_{i-1}-s\right)^{\alpha}\right]_{0}^{t_{i}}[\|a\|+b\|x\|] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[\mid\left(t_{i-1}-s\right)^{\alpha}\right]_{t_{i-1}}^{t_{i}}[\|a\|+b\|x\|] \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[\mid\left(t_{i-1}-t_{i}\right)^{\alpha}+\left(t_{i}{ }^{\alpha}-t_{i-1}{ }^{\alpha}\right)\right][\|a\|+b\|x\|] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[\|-\left(t_{i-1}-t_{i}\right)^{\alpha} \mid\right][\|a\|+b\|x\|] \tag{4}
\end{align*}
$$

By mean value theorem there is $z, t_{i-1}<z<t_{i}$ such that

$$
t_{i}^{\alpha}-t_{i-1}^{\alpha}=\left(t_{i}-t_{i-1}\right) \alpha z^{\alpha-1} \leq\left(t_{i}-t_{i-1}\right) \alpha T^{\alpha-1}
$$

Then

$$
\begin{align*}
V(A x, T) & \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[\left|\left(t_{i-1}-t_{i}\right)^{\alpha}\right|+\alpha\left(t_{i}-t_{i-1}\right) T^{\alpha-1}+\left|-\left(t_{i-1}-t_{i}\right)^{\alpha}\right|\right][\|a\|+b\|x\|] \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[2\left|\left(t_{i}-t_{i-1}\right)^{\alpha}\right|+\alpha\left(t_{i}-t_{i-1}\right) T^{\alpha-1}\right][\|a\|+b\|x\|] \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\sup \frac{\lambda}{\alpha} \sum_{i=1}^{n}\left[2\left(t_{i}-t_{i-1}\right)+\alpha\left(t_{i}-t_{i-1}\right) T^{\alpha-1}\right][\|a\|+b\|x\|] \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M] \\
& +\frac{\lambda}{\alpha}\left[2\left(t_{n}-t_{0}\right)+\alpha\left(t_{n}-t_{0}\right) T^{\alpha-1}\right][\|a\|+b\|x\|] \\
& \leq V(g, T)+\frac{1-\alpha}{N(\alpha)}[k V(x, T)+M]+\frac{\lambda}{\alpha}\left(2 T+\alpha T^{\alpha}\right)[\|a\|+b\|x\|] \\
& <\infty \tag{5}
\end{align*}
$$

from the previous estimate, all functions belonging to $A B_{r}$ have variation majorized by the same constant on every closed subinterval of $[0, T]$.
In the following, let the set $Q_{r}=$ Conv $A B_{r}$, it is clear that $Q_{r} \subset B_{r}$. We will show that Q_{r} is nonempty, bounded convex, closed and compact in measure.
To prove Q_{r} is nonempty, let $x(t)=\frac{r}{2}$, we get

$$
\|x\| \leq \int_{0}^{1}\left|\frac{r}{2}\right| d t=\frac{r}{2} \leq r
$$

Since, $Q_{r} \subset B_{r}$ then it is bounded.
To prove the convexity of Q_{r}, take $x_{1}, x_{2} \in Q_{r}$ which gives $\left\|x_{i}\right\| \leq r, \quad i=1,2$. Let

$$
z(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t), \quad t \in[0, T], \lambda \in[0, T]
$$

Then

$$
\begin{aligned}
\|z\| & \leq \lambda\left\|x_{1}\right\|+(1-\lambda)\left\|x_{2}\right\| \\
& \leq \lambda r+(1-\lambda) r=r .
\end{aligned}
$$

So, we get Q_{r} is convex.
Now, we prove that the closeness of Q_{r}. To do this, suppose $\left\{x_{n}\right\}$ is the sequence of elements in Q_{r} that converges to x in $L_{1}[0, T]$, then this sequence is convergent in measure and as a result of the Vitali convergence theorem and the characterization of convergence in measure (the Riesz theorem) this leads to the existence of $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ that converges to x almost uniformly on $[0, T]$ that means $x \in Q_{r}$ and thus the set Q_{r} is closed.
Further, by (3) we conclude that the functions from Q_{r} are equibounded at the point t_{0}. Moreover, by (5) and Corollary 2.1 we deduce that Q_{r} is the set of locally bounded variation. Combining the above mentioned properties of Q_{r} and by Theorem 2.5 we get Q_{r} is compact in measure.

Finally, we prove that the operator G is a contraction with respect to the measure of noncompactness χ.
Take a subset $X \subset Q_{r}$ and $\varepsilon>0$ is fixed, then $\forall x \in X$ and for a set $D \subset[0, T]$, meas $D \leq \varepsilon$, we get

$$
\begin{aligned}
\int_{D}|(A x)(t)| d t & \leq \int_{D} \left\lvert\, g\left(\left.t\left|d t+\frac{1-\alpha}{N(\alpha)} \int_{D}\right| f(t, x(t))\left|d t+\lambda \int_{D}\right| \int_{0}^{t}(t-s)^{\alpha-1} f(s, x(s)) d s \right\rvert\, d t\right.\right. \\
& \leq \int_{D} g(t) d t+\frac{1-\alpha}{N(\alpha)} \int_{D}[a(s)+b|x(s)|] d s+\lambda \int_{D} \int_{s}^{T}(t-s)^{\alpha-1}|f(s, x(s)) d t| d s \\
& \leq \int_{D} g(t) d t+\frac{1-\alpha}{N(\alpha)}\left[\int_{D} a(s) d s+b \int_{D}|x(s)| d s\right]+\left.\frac{\lambda}{\alpha}(t-s)^{\alpha-1}\right|_{s} ^{T} \int_{D}[a(s)+b|x(s)|] d s \\
& \leq \int_{D} g(t) d t+\left(\frac{1-\alpha}{N(\alpha)}+\frac{\lambda}{\alpha} T^{\alpha-1}\right) \int_{D} a(s) d s+b\left(\frac{1-\alpha}{N(\alpha)}+\frac{\lambda}{\alpha} T^{\alpha-1}\right) \int_{D}|x(s)| d s
\end{aligned}
$$

Therefore, using the fact that

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} g(t) d t: D \subset[0, T], \operatorname{meas} D \leq \varepsilon\right\}=0
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} a(t) d t: D \subset[0, T], \operatorname{meas} D \leq \varepsilon\right\}=0
$$

Then using (2), we get

$$
\beta(A X) \leq b\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda}{\alpha} T^{\alpha-1}\right] \beta(X)
$$

Since X is a subset of Q_{r} and Q_{r} is compact in measure, we have

$$
\chi(A X) \leq b\left[\frac{1-\alpha}{N(\alpha)}+\frac{\lambda}{\alpha} T^{\alpha-1}\right] \chi(X)
$$

Therefore, by using assumption (iv) we can apply Darbo fixed point theorem. This completes the proof.

4 Uniqueness of the solution

Now, we can prove the existence of our unique solution.

Theorem 4.1 If the assumptions of Theorem 3.1 is satisfied but instead of assuming (iv), let $k\left(\frac{\alpha(1-\alpha)+\lambda N(\alpha) T^{\alpha}}{\alpha N(\alpha)}\right)<1$. Then, equation (1) has a unique solution on $[0, T]$.

Proof. To prove that equation (1) has a unique solution, let $x(t), y(t)$ be any two solutions of equation (11) in B_{r}, we have

$$
\begin{aligned}
\|x-y\| & \leq \frac{1-\alpha}{N(\alpha)} \int_{0}^{T}|f(t, x(t))-f(t, y(t))| d t+\lambda \int_{0}^{T} \int_{0}^{t}(t-s)^{\alpha-1}|f(s, x(s))-f(s, y(s))| d s d t \\
& \leq \frac{k(1-\alpha)}{N(\alpha)} \int_{0}^{T}|x(t)-y(t)| d t+\lambda k \int_{0}^{T} \int_{s}^{T}(t-s)^{\alpha-1}|x(s)-y(s)| d t d s \\
& \leq \frac{k(1-\alpha)}{N(\alpha)}\|x-y\|+\left.\lambda k \frac{(t-s)^{\alpha}}{\alpha}\right|_{s} ^{T} \cdot\|x-y\| \\
& \leq \frac{k(1-\alpha)}{N(\alpha)}\|x-y\|+\frac{\lambda k T^{\alpha}}{\alpha}\|x-y\| .
\end{aligned}
$$

Therefore,

$$
\left[1-k\left(\frac{\alpha(1-\alpha)+\lambda N(\alpha) T^{\alpha}}{\alpha N(\alpha)}\right)\right]\|x-y\|_{L_{1}} \leq 0
$$

This yields $\|x-y\|=0, \Rightarrow x=y$, which completes the proof.
Data Availability (excluding Review articles)
Applicable.

References

[1] A. Angurai, M. L. Maheswari, Existence of solutions for fractional impulsive neutral functional infinite delay integro differential equations with nonlocal conditions, J. Nonlinear sci. Appl. 5 (2012).
[2] J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.
[3] J. Banas and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1) (1992), 133-151.
[4] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math. 60, M. Dekker, New york and Basel 1980.
[5] D. Bugajewski, On BV-solutions of some nonlinear integral equations,Integral Equations and Operator Theory, vol. 46, no. 4, pp. 387-398, 2003.
[6] G. Darbo, Punti untiti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padora 24 (1955) 84-92.
[7] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum. 21 (1977), 259-262.
[8] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, On the solvability of nonlinear integral functional equation, Inter. J. Math. Tren. \& Tech. (IJMTT), Vol. 34, No. 1, June 2016, 39-44.
[9] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type, Aryabhatta J. M. \& Inform., Vol. 08, Iss.-02, (Jul.-Dec. 2016), 1-15.
[10] M. M. El-Borai, W. G. El-Sayed, A. M. Moter, Continuous Solutions of a Quadratic Integral Equation, Inter. J. Life Science and Math. (IJLSM), Vol. 2 (5)-4, (2015), 21-30.
[11] M. M. El-Borai, W. G. El-Sayed \& R. M. Bayomi, Solvability of non-linear integro-differential equation, Inter. J. Sc. \& Eng. Res., Vol. 10, Issu. 7, July-2019, ISSN 2229-5518, pp. 1085-1093.
[12] W. G. El-Sayed, Nonlinear functional integral equations of convolution type, Portugaliae Mathematica 54 (4) (1997) 449-456.
[13] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the existence of continuous solutions of a nonlinear quadratic fractional integral equation, J. Adv. Math. (JAM), Vol 18 (July, 2020) ISSN: 2347-1921, 14-25.
[14] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the solvability of a nonlinear functional integral equations via measure of noncompactness in $L^{P}\left(R^{N}\right)$, J. Adv. Math. (JAM), Vol 19 (2020) ISSN: 2347-1921, 74-88.
[15] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, An existence theorem for a nonlinear integral equation of Urysohn type in $L^{P}\left(R^{N}\right)$, Adv. Math. Sci. J. 9 (2020), no. 11, ISSN: 1857-8365, 9995-10005.
[16] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On Monotonic Solutions of Nonlinear Quadratic Integral Equation of Convolution Type, Case Studies J., ISSN (2305-509X)- Vol. 9, Issue 10-oct-2020, 78-87.
[17] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Bounded variation solutions of a functional integral equation in $L_{1}\left(R^{+}\right)$, Int. J. Mech. Eng., ISSN: 0974-5823, Vol. 7 No. 2 February 2022, 2600-2605.
[18] I. Podlubny and A. M. A. El-Sayed, On two defintions of fractional derivative, Preprint UEF-03-96, Slovak Acedemy of Sciences, Institute of Experimental Physics 1996.
[19] S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of Transmission dynamics of Covid-19 mathematical model under ABC fractional order derivative, J. Results in physics 2020. doi.10.1016/j.rinp.2020.103507.

Supplementary Materials

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interests.

Funding Statement

The research was self-sposored by the author.

Acknowledgments

The authors like to thank the anonymous referees for their valuable comments and suggestions, which greatly improved the presentation of this paper.

