Modified New Iterative Method for Solving Nonlinear Partial Differential Equations

Authors

  • Alaa K. Jabber Department of Mathematics, College of Education, University of Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.24297/jam.v19i.8800

Keywords:

Iterative Method,, partial differential equations, initial value problem, numerical solution, Laplace transform

Abstract

In this paper, the iterative method, proposed by Gejji and Jafari in 2006, has been modified for solving nonlinear initial value problems. The Laplace transform was used in this modification to eliminate the linear differential operator in the differential equation. The convergence of the solution was discussed according to the modification proposed. To illustrate this modification some examples were presented.

Downloads

Download data is not yet available.

References

Rach, R. (1987). On the Adomian (decomposition) method and comparisons with Picards method. Journal of Mathematical Analysis and Applications, 128(2), 480-483. DOI: 10.1016/0022-247x(87)90199-5.

Hosseini, M., and Nasabzadeh, H. (2007). Modified Adomian decomposition method for specific second-order ordinary differential equations. Applied Mathematics and Computation, 186(1), 117-123. DOI: 10.1016/j.amc.2006.07.094.

Abassy, T. A. (2010). Improved Adomian decomposition method. Computers and Mathematics with Applications, 59(1), 42-54. DOI: 10.1016/j.camwa.2009.06.009.

Al-Hayani, W. (2011). Adomian decomposition method with Green's function for sixth-order boundary value problems. Computers and Mathematics with Applications, 61(6), 1567-1575. DOI: 10.1016/j.camwa.2011.01.025.

Kareem, Z. H., and Tawfiq, L. N. M. (2020). Recent Modification of Decomposition Method for Solving Nonlinear Partial Differential Equations. Journal of Advances in Mathematics. 18, 2347-1921. DOI: https://doi.org/10.24297/jam.v18i.8744

Agom, E. U., and Ogunfiditimi, F. O. (2016). Numerical Application of Adomian Decomposition Method to One Dimensional Wave Equations. International Journal of Science and Research (IJSR), 5(5), 2306-2309. DOI: 10.21275/v5i5.nov162419.

Enadi, M. O., and Tawfiq, L.N.M. (2019). New Technique for Solving Autonomous Equations. Ibn Al-Haitham Journal for Pure and Applied Science, 32(2), 123-130. DOI: 10.30526/32.2.2150.

He, J.-H. (2006). Homotopy perturbation method for solving boundary value problems. Physics Letters A, vol. 350(1-2), 87-88. DOI: 10.1016/j.physleta.2005.10.005.

Jafari, H., and Saeidy, M. (2008). Application of Homotopy Perturbation Method for Solving Gas Dynamics Equation. Applied Mathematical Sciences, 2(48), 2393-2396. URL: http://www.m-hikari.com/ams/amspassword-2008/ams-password45-48-2008/index.html.

Yu, J., and Huang, J.-G. (2010). Application of Homotopy Perturbation Method for the Reaction-diffusion Equation. International Journal of Nonlinear Sciences and Numerical Simulation, 11(Supplement). DOI: 10.1515/ijnsns.2010.11.s1.61.

Afrouzi, G., Ganji, D. D., Hosseinzadeh, H., and Talarposhti, R. (2011). Fourth Order Volterra Integrodifferential Equations Using Modified Homotopy-perturbation Method. Journal of Mathematics and Computer Science, 3(2), 179-191. DOI: 10.22436/jmcs.03.02.10.

Az-Zo'bi, E. (2012). Modified Laplace Decomposition Method. World Applied Sciences Journal, 18(11), 1481-1486. URL: https://www.idosi.org/wasj/wasj18(11)/1.pdf. DOI: 10.5829/idosi.wasj.2012.18.11.1522.

Osama H. Mohammed, Huda A. Salim. (2018). Computational methods based Laplace decomposition for solving nonlinear systems of fractional order differential equations. Alexandria Engineering Journal, 57(4), 3549-3557. DOI: 10.1016/j.aej.2017.11.020.

Momani, S., Odibat, Z., and Alawneh, A. (2007). Variational iteration method for solving the space- and time-fractional KdV equation. Numerical Methods for Partial Differential Equations, 24(1), 262-271. DOI: 10.1002/num.20247.

Salehpoor, E., and Jafari, H. (2011). Variational Iteration Method A Tools For Solving Partial Differential Equations. Journal of Mathematics and Computer Science, 2(2), 388-393. DOI: 10.22436/jmcs.002.02.18.

Wang, Q., and Fu, F. (2012). Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments. International Journal of Engineering and Manufacturing, 2(2), 36-43. DOI: 10.5815/ijem.2012.02.06.

Tawfiq, L.N.M. (2016). Using collocation neural network to solve Eigenvalue problems. MJ Journal on Applied Mathematics, 1(1), 1-8. DOI:10.1155/2014/906376.

Salih H, Tawfiq LNM, Yahya ZRI, Zin S M. (2018). Solving Modified Regularized Long Wave Equation Using Collocation Method. Journal of Physics: Conference Series, 1003(012062), 1-10. DOI:10.1088/1742-6596/1003/1/012062.

Enadi MO, Tawfiq LNM. (2019). New Approach for Solving Three Dimensional Space Partial Differential Equation. Baghdad Science Journal, 16(3), 786-792. DOI:10.21123/bsj.2019.16.3(Suppl.).0786. URL: http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4153.

Tawfiq, L.N.M.; Naoum, R.S. (2007). Density and approximation by using feed-forward Artificial neural networks. Ibn Al-Haitham Journal for Pure and Applied Sciences, 20(1), 67-81. URL: http://jih.uobaghdad.edu.iq/index.php/j/article/view/1335.

Effati, S., and Pakdaman, M. (2010). Artificial neural network approach for solving fuzzy differential equations. Information Sciences, 180(8), 1434-1457. DOI: 10.1016/j.ins.2009.12.016.

Tawfiq, L. N. M.; Oraibi, Y. A. (2013). Fast Training Algorithms for Feed Forward Neural Networks. Ibn Al-Haitham Journal for Pure and Applied Science, 26(1), 275-280. :URL: http://jih.uobaghdad.edu.iq/index.php/j/article/view/534.

Ali MH, Tawfiq LNM, Thirthar A. A. (2019). Designing Coupled Feed Forward Neural Network to Solve Fourth Order Singular Boundary Value Problem. Revista Aus, 26(2), 140-146. DOI: 10.4206/aus.2019.n26.2.20. URL: http://www.ausrevista.com/26-2.html.

Tawfiq, L.N.M., and Salih, O. M. (2019). Design neural network-based upon decomposition approach for solving reaction-diffusion equation. Journal of Physics: Conference Series, 1234(1234 012104), 1-8. DOI: 10.1088/1742-6596/1234/1/012104.

Gejji, V. D., and Jafari, H. (2006). An iterative method for solving non linear functional equations. J. Math. Anal. Appl. 316, 753–763. DOI:10.1016/j.jmaa.2005.05.009.

Bhalekar, S., and Gejji, V. D. (2008). New iterative method: Application to partial differential equations. Appl. Math. Comput, 203, 778-783. DOI:10.1016/j.amc.2008.05.071.

Yaseen, M., and Samraiz, M. (2012). The Modified New Iterative Method for Solving Linear and Nonlinear Klein-Gordon Equations. Applied Mathematical Sciences, 6(60), 2979-2987. URL: http://www.m-hikari.com/ams/ams-2012/ams-57-60-2012/yaseenAMS57-60-2012.

Al-Subaihi, I.A. (2015). Three-Step Iterative Method for Solving Nonlinear Equations. Universal Journal of Applied Mathematics, 3(2): 29-33. DOI: 10.13189/ujam.2015.030204.

Nisse K, Nisse L. (2018). An Iterative Method for Solving a Class of Fractional Functional Differential Equations with “Maxima”. Mathematics, 6(1). DOI:10.3390/math6010002.

Ucar, F., Yaman, V., and Yilmaz, B. (2018). Iterative Methods For Solving Nonlinear Lane-Emden Equations. Marmara Fen Bilimleri Dergisi, 30 (2). 176-188. DOI: 10.7240/marufbd.410960.

Cohen, A. M. (2007). Numerical methods for Laplace transform inversion. New York: Springer. ISBN: 978-0387282619.

Downloads

Published

2020-07-28

How to Cite

Alaa K. Jabber. (2020). Modified New Iterative Method for Solving Nonlinear Partial Differential Equations. JOURNAL OF ADVANCES IN MATHEMATICS, 19, 1–10. https://doi.org/10.24297/jam.v19i.8800

Issue

Section

Articles