Regional Boundary Strategic Sensors Characterizations

Authors

  • Raheam Al-Saphory Tikrit University, Iraq
  • Hind K. Kolaib Tikrit University, Iraq

DOI:

https://doi.org/10.24297/jam.v14i2.6368

Keywords:

Strategic sensors, Exact -observabilit, Approximate -observable, Diffusion systems

Abstract

This paper, deals with the linear infinite dimensional distributed parameter systems in a Hilbert space where the dynamics of system is governed by strongly continuous semi-groups. More precisely, for parabolic distributed systems the characterizations of regional  boundary strategic sensors have been discussed and analyzed in different cases of regional  boundary observability in infinite time interval. Furthermore, the results so obtained are applied in two-dimensional systems and sensors studied under which conditions guarantee regional boundary observability in a sub-region of the system domain boundary.  Also, the authors show that, the existent of a sensor for the diffusion system is not strategic in the usual sense, but it may be regional  boundary strategic of this system.

Downloads

Download data is not yet available.

Author Biographies

Raheam Al-Saphory, Tikrit University, Iraq

Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq

Hind K. Kolaib, Tikrit University, Iraq

Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq

References

El Jai, A. and Pritchard, A. J. 1987. Sensors and actuators in distributed systems, International Journal of Control, 46, 1139-1153.

El Jai, A. and Pritchard, A. J. 1988. Sensors and controls in the analysis of distributed parameter systems; Ellis Harwood Series in Mathematics and Applications, Wiley, New York.

Curtain, R. F. and Pritchard, A. J. 1977. Functional analysis in modern applied mathematics, Academic Press, London.

Curtain, R. F. and Pritchard, A. J. 1978. Infinite dimension linear theory systems; Lecture Notes in Control and Information Sciences, Springer-Verlag : New York.

Curtain, R. F. and Zwart, H. 1995. An Introduction to infinite dimensional linear system theory; Springer-Verlag, New York.

El Jai, A. 1991. Distributed systems analysis via sensors and actuators. International Journal of Sensors and Actuators, 29, 1-11.

El Jai, A. and Amouroux, M. 1988. Sensors and observers in distributed parameter. International Journal of Control, 47, 333-347.

El Jai, A. Amouroux, M. and Zerrik E. 1994. Regional observability of distributed system. International Journal of Systems Science, 25, 301-313.

El Jai, A. and El Yacoubi, S. 1993. On the number of actuators in parabolic system. International Journal of Applied Mathematics and Computer Sciences,103, 673-686.

El Jai, A. Guisset, E. Trombe, A. and Suleiman, A. 2000. Application of boundary observation to a thermal systems. Conference of MTNS 2000, Perpignan, France, June 19-23.

El Jai, A. and Hamzaoui, H. 2009. Regional observation and sensors. International Journal of Applied Mathematics and Computer Sciences,19, 5-14.

Al-Saphory, R. Al-Joubory, M. and Jasim, M. 2013. Regional strategic sensors characterizations. Journal of Mathematical and Computational Science. Vol. 3, No. 2, 401-418.

Al-Saphory, R. El Jai, A. 2001. Sensor structures and regional detectability of parabolic distributes systems. Sensors and Actuators A, 90,163-171.

Al-Saphory, R. El Jai, A. 2001. Sensors characterizations for regional boundary detectability in distributed parameter systems. Sensors and Actuators A, 94,1-10.

Al-Saphory, R. and El Jai, A. 2001. Sensors and regional asymptotic ?-observer for distributed diffusion systems. Sensors, 1, 161-182.

Al-Saphory, R. and El Jai, A. 2002. Regional asymptotic state reconstruction. International Journal of Systems Science, 33, 1025-1037.

El Jai, A. Simon, M. C. and Zerrik, E. 1993. Regional observability and sensor structures. International Journal of Sensor and Actuator, 39, 95-102.

El Jai, A. Simon, M. C. Zerrik, E. and Amouroux, M. 1995. Regional observability of a thermal process. IEEE Transaction on Automatic Control, 40, 518-521.

Burns, J. Jorggaard, J. Cliff, M. and Zeietman, L. 2009. A PDE approach to optimization and control of high performance buildings, workshop in Numerical Techniques for Optimization Problems with PDE Constraints, No. 04/2009, DOI: 10.4171/OWR/2009/04, 25-31 January, Houston, Denmark.

Gressang, R. and Lamont, G. 1975. Observers for systems characterized by semi-group. IEEE on Automatic and Control, 20, 523-528.

Chen, Y. Q,. Moore K., and Song Z. 2004. “Diffusion boundary determination and zone control via mobile actuator-sensor networks (MAS-net): Challenges and opportunities,” in Intelligent Computing: Theory and Applications II, part of SPIE’s Defense and Security, Orlando, FL, Apr. 2004.

Zerrik, E. Bourray, H. and Boutoulout, A. 2002. Regional boundary observability: a numerical approach. International Journal of Applied Mathematics and Computer Science,12, 143-151.

Curtain, R. F. 1984. Finite dimension compensator for parabolic systems with unbounded control and observation. SIAM J. Control and Optimization, 22, 255-275.

Al-Saphory, R. and Kolaib H. 2017, Regional boundary exponential reduced observability in distributed parameter systems. Journal of Iraqi Al-Khwarizmi Society, 1 (1), 1-18.

Al-Saphory, R. Al-Jawari, N. and Al-Janabi, A. 2015, Regional gradient strategic sensors characterizations, Journal of Advances in Mathematics, 10, (6), 3604-3618.

Al-Saphory, R., Al-Jawari, N., and Al-Janabi, A. 2016, regional boundary gradient strategic sensors Characterizations. Mathematical theory and Modeling, 6 (1), 10-26.

Al-Saphory, R. Al-Jawari, N. and Al-Qaisi, A. 2010, Regional gradient detectability for infinite dimensional systems. Tikrit Journal of Pure Science, 15 (2), 1-6.

Al-Saphory, R. 2002, Asymptotic regional boundary observer in distributed parameter systems via sensors structures. Sensors, 2, 137-152.

Al-Saphory R. and Al-Mullah Sh., 2015, Regional exponential reduced observability in distributed parameter systems, Journal of Advances in Mathematics, 11 (4), 5058-5074.

Downloads

Published

2018-07-09

How to Cite

Al-Saphory, R., & Kolaib, H. K. (2018). Regional Boundary Strategic Sensors Characterizations. JOURNAL OF ADVANCES IN MATHEMATICS, 14(2), 7834–7850. https://doi.org/10.24297/jam.v14i2.6368