On Regional Boundary Gradient Strategic Sensors In Diffusion Systems
DOI:
https://doi.org/10.24297/jam.v20i.8953Keywords:
DDP-Systems, RBGS-Sensors, ERBG-Obsevability, WRBG-ObsevabilityAbstract
This paper is aimed at investigating and introducing the main results regarding the concept of Regional Boundary Gradient Strategic Sensors (RBGS-sensors the in Diffusion Distributed Parameter Systems (DDP-Systems . Hence, such a method is characterized by Parabolic Differential Equations (PDEs in which the behavior of the dynamic is created by a Semigroup ( of Strongly Continuous type (SCSG in a Hilbert Space (HS) . Additionally , the grantee conditions which ensure the description for such sensors are given respectively to together with the Regional Boundary Gradient Observability (RBG-Observability can be studied and achieved . Finally , the results gotten are applied to different situations with altered sensors positions are undertaken and examined.
Downloads
References
Al-Saphory R. (2011). Strategic sensors and regional exponential observability, ISRN Applied Mathematics, Article ID 673052,1-13. https://www.hindawi.com/journals/isrn/2011/673052/
Al-Saphory R. Al-Jawari N. and Al-Janabi A. (2016). General asymptotic regional gradient observer, Aust. J. Basic & Appl. Sci.,10 (9), 8-18. http://www.ajbasweb.com/old/ajbas_May_2016.html
Al-Saphory R., Al-Jawari, N., Al-Janabi, A.( 2016). Asymptotic regional gradient full-order observer in distributed parabolic systems, International Journal of Contemporary Mathematical Sciences,11(7), 343 – 358. http://dx.doi.org/10.12988/ijcms.2016.6633
Al-Saphory R., Al-Jawari N. and Al-Janabi A. (2021). Asymptotic regional gradient reduced-order observer, Journal of Physics: Conference Series, Preprinted.
Al-Saphory R. Al-Jawari N. and Al-Qaisi A. (2010). Regional gradient detectability for infinite dimensional systems, Tikrit Journal of Pure Science,15(2), 1-6. https://www.researchgate.net/publication/261550172
Al-Saphory R. and El Jai A. (2001). Sensors characterizations for regional boundary detectability in distributed parameter systems, Sensors and Actuators A,94 (1-2),1-10. https://www.sciencedirect.com/science/article/abs/pii/S0924424701006690
Al-Saphory R. and El Jai A.(2001). Sensors and asymptotic ω-observer for distributed diffusion systems, Sensors,1, 161-182. https://www.mdpi.com/1424-8220/1/5/161/htm
Al-Saphory R. and El Jai, A. (2002). Regional asymptotic state reconstruction, international journal of system science,33, 1025-1037. https://www.tandfonline.com/doi/abs/10.1080/00207720210166998
[Al-Saphory R., Khalid Z. and Jasim M. (2021). Junction interface conditions for asymptotic gradient full-order observer in Hilbert space, Italian Journal for Pure Science and Applied Mathematics, Preprinted.
Al-Saphory R., Khalid Z. and El-Jai A. (2020). Regional boundary gradient closed loop control system andΓ^* AGOF-observer, Journal of Physics: Conference Series,1664 (012061), 1-20. https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012061
Al-Saphory R., Al-Shaya A. and Rekkab S. (2020).,, Regional boundary asymptotic gradient reduced order observer, Journal of Physics: Conference Series,1664 (012101), 1-19. https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012101/meta
Ben Hadid S., Rekkab S. and Zerrik, E. (2012). Sensors and regional gradient observability of hyperbolic systems, Intelligent Control and Automation,3, 78-89. https://m.scirp.org/papers/17578
Brezis H. (1987). Analyse Fonctionnalle, Theorie et Applications, 2em tirage. Masson, Paris, France. https://www.dunod.com/sciences-techniques/analyse-fonctionnelle-theorie-et-applications
Curtain R. F. and Pritchard A. J.( 1978). Infinite dimension linear theory systems, Lecture Notes in Control and Information Sciences, Springer-Verlag,8. https://www.springer.com/gp/book/9783540089612
Curtain R. F. and Zwart H. (1995), An introduction to infinite dimensional linear system theory, Springer-Verlag, New York. https://www.springer.com/gp/book/9780387944753
El Jai A. and Amouroux M. (1988). Sensors and observers in distributed parameter systems, International Journal of Control,47 (1), 333– 347. https://www.tandfonline.com/doi/abs/10.1080/00207178808906013
El Jai A., Amouroux, M. and Zerrik, E. (1994). Regional observability of distributed systems, International Journal of Systems Science,25 (2), 301-313. https:/www.tandfonline.com/doi/abs/10.1080/00207729408928961
El Jai A. and Hamzauoi H. (2009). Regional observation and sensors, International Journal of Applied Mathematics and Computer Sciences,19 (1), 5-14. https://www.sciencedirect.com/science/article/abs/pii/092442479380204T
El Jai A. and Pritchard A. (1987). Sensors and actuators in distributed systems, International Journal of Control,46 (4), 1139–1153. https://www.tandfonline.com/doi/abs/10.1080/00207178708933956?journalCode=tcon20
El Jai A. and Pritchard A. (1988). Sensors and controls in the analysis of distributed parameter systems, Ellis Horwood Series in Mathematics and Applications, Wiley, New York. https://www.ebay.co.uk/itm/Sensors-and-Controls-in-the-Analysis-of-Distributed-Systems-Mathematics-and-its/153079971972?epid=91726288&hash=item23a4470084:i:153079971972
El Jai A., Simon, M.C. and Zerrik, E.( 1993). Regional observability and sensor structures, Sensors and Actuators A.39 (2), 95-102. https://www.sciencedirect.com/science/article/abs/pii/092442479380204T
El Jai A., Simon, M.C., Zerrik, E. and Amouroux, M. (1995). Regional observability of a thermal process, IEEE Transaction on Automatic Control.40 (1), 518-521. https:/ieeexplore.ieee.org/document/376073
Jasim M. Swady R. and Al-Saphory R. (2013). Dynamical stability of charged isentropic superdense star model, Journal of Mathematical and Computational Science,3 (1), 266-277. http://scik.org/index.php/jmcs/article/view/767
Zerrik E., Badraoui L. and El Jai A. (1999). Sensors and regional boundary state reconstruction of parabolic systems, Sensors and Actuators A,75 (7), 102-117. https://www.sciencedirect.com/science/article/abs/pii/S0924424798002933
Zerrik E. and Bourray H.( 2003). Gradient 0bservability for diffusion systems, International Journal of Applied Mathematics and Computer Sciences.13, 139-150. http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-amcv13i2p139bwm
Zerrik E., Bourray H. and Badraoui L. (2000). How to reconstruct a gradient for parabolic systems, Conference of MTNS 2000, Perpignan, France, June 19-23. https://www.researchgate.net/publication/272505683
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Raheam Al-Saphory, Ahlam Y Al-Shaya
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.