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ABSTRACT 

This paper, deals with the linear infinite dimensional distributed parameter systems in a Hilbert space where 

the dynamics of the system is governed by strongly continuous semi-groups. More precisely, for parabolic 

distributed systems the characterizations of regional boundary strategic sensors have been discussed and 

analyzed in different cases of regional boundary observability in infinite time interval. Furthermore, the results 
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INTRODUCTION  

The important problem of strategic sensor in distributed parameter systems has much attention in literatures 

([1-2] and references therein), in order that to estimate current state of the considered system [3-4]. This 

problem may be called the observability notion in control systems theory [5]. Thus, the observation problem is 

depended on the possibility of the state reconstruction from the knowledge of system dynamics and output 

function by using an approach to choose the best sensor may be strategic [6-7]. Recently, regional strategic 

sensors characterizations is developed by El-Jai, Zerrik and Al-Saphory et al. for different cases in finite [8-11] 

or infinite time interval, may be represented as regional asymptotic systems analysis [12-16] and focused on 

state estimation in a sub-region 𝜔 of the domain Ω [17-18]. The purpose of this paper is to extend the 

previous results as in ref. [12] to the regional boundary case where the interested region Γ is a part of the 

domain boundary  ∂Ω. The main reason behind the study of this notion is that, there exists some problem in 

the real world cannot observe the system state in the whole domain, but it is possible in a part of the 

considered domain [15-16, 18-21]. The scenario described by energy exchange problem, where the aim is to 

determine the energy exchanged in a casting plasma on a plane target which is perpendicular to the direction 

of the flow from measurements (internal pointwise sensors) carried out by thermocouples (Figure 1),  

 

  Fig. 1: Model of energy exchanged problem on Γ 

where  (1) is the torch of plasma, (2) is the probe of (steal), (3) is the insulator, Γ is the face of exchange and 𝑏1, 

𝑏2 sensor locations. This paper is organized as follows: The second section is focused on the considered 

system and the problem of regional boundary observability. The third section is devoted to the mathematical 

concepts of regional boundary observability and the characterization of regional boundary strategic sensors in 

various situations are studied. In the last section, we illustrate applications with many situations of sensor 

locations. 

2. REGIONAL BOUNDARY STRATEGIC SENSORS  

In this section, we are interested to study and characterize the notion of strategic sensors on a sub -region of 

the domain boundary of the considered systems and present some original results related to this notion. 

2.1 Problem Statement 

Let Ω be an open regular and bounded subset of 𝑅𝑛 , with smooth boundary 𝜕Ω. Suppose that Γ be a non-

empty given sub-region of 𝜕𝛺  with positive measurement. For 𝑇 ˃ 0  let us set Θ =  Ω × (0,∞) and Π =

 ∂Ω × (0,∞).  The considered systems is described by the following state space equations  

          

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)          Θ

𝑥(𝜉 , 0) = 𝑥0(𝜉)                            Ω̅
𝜕𝑥

𝜕𝜗
(𝜂, 𝑡) = 0                                  Π

                                             (1) 

where  Ω̅ holds for closure of  𝛺 and 𝑥0(𝜉) is unknown initial state in 𝐻1 (Ω̅). The system (1) is defined with a 

Neumann boundary conditions, 𝜕𝑥 𝜕𝜗⁄  holds for the outward normal derivative. The measurements maybe 

given by the use of zone, pointwise or lines sensors which is located insides of  Ω or on the boundary [1]. Thus, 

the augmented output function to (1) is defied by 
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          𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡)                                                                                                                                          (2) 

where 𝐴 is a second order linear differential operator, which is generated a strongly continuous semi-group 

(𝑆𝐴(𝑡))𝑡≥0  on the Hilbert space  𝑋 = 𝐻1 (Ω) and, it is self-adjoint with compact resolvent. The operator  𝐵 ∈

 𝐿 (𝑅𝑝 ,𝐻1 (Ω) ) and  𝐶 ∈  𝐿 (𝑅𝑞 , 𝐻1 (Ω̅) ),  depend on the structures of actuators and sensors [1-2]. The 

spaces 𝑋, 𝑈 and 𝑂 be are separable Hilbert spaces where 𝑋 is the state space, 𝑈 = 𝐿2 (0, ∞, 𝑅𝑝) is the control 

space and 𝑂 = 𝐿2(0,∞ , 𝑅𝑞)  is the observation space, where 𝑝 and 𝑞 are the numbers of actuators and sensors. 

Under the given assumption, the system (1) has a unique solution [20]: 

          𝑥(𝜉 ,𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉) + ∫ 𝑆𝐴(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0                                                                                                 (3)  

The problem is that, how to present sufficient conditions for regional boundary strategic sensors which 

enables to observe the current state in a given sub region Γ (see below Figure 2 ), using convenient sensors.  

Mathematical model in (Figure 2)  is more general spatial case in (Figure 1).  

 

Fig. 2: The domain of Ω, the sub-regions ω and Γ, various sensors locations. 

2.2 Definitions and Characterizations 

The regional boundary observability concept has been developed recently by El Jai et al. as in [18-22] and 

extended to the regional boundary asymptotic state by Al-Saphory and El Jai in ref.s [1-5]. To recall regional 

boundary observability, consider the associated autonomous system to (1) given by     

          

{
 

 
 𝜕𝑥

 𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥( 𝜉, 𝑡)                        Θ

𝑥( 𝜉, 0) = 𝑥0(𝜉)                               Ω̅
𝜕𝑥

𝜕𝜗
(𝜂, 𝑡) = 0                                      Π

                                                                                                             (4) 

 Thus, the knowledge of 𝑥( 𝜉, 0) permits to observe regional boundary state 𝑥( 𝜉, 𝑡) at any time 𝑡. Consider 

now the following points: 

▪ The solution of system (4) is given by the following form, 

          𝑥( 𝜉, 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉),    ∀𝑡 ≥ 0                                                                                                                     (5)                                                                 

▪ The operator  𝐾 is defined by following  

           
𝐾: 𝑋 → 𝒪                  
𝑥 → 𝐶𝑆𝐴(. )𝑥

                                                                                                                                     (6) 

then, we obtain 

         𝑦( . 𝑡) = 𝐾(𝑡)𝑥( . ,0)                                                                                                                                     (7) 

where 𝐾 is bounded linear operator (this is valuable on some output function) [23]. 

▪ The operator 𝐾∗ : 𝒪 → 𝑋   is the adjoint of  𝐾 defined by 
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         𝐾∗𝑦∗ = ∫ 𝑆𝐴
∗(𝑠)

𝑡

0 𝐶 ∗𝑦∗(. , 𝑠)𝑑𝑠                                                                                                                       (8) 

▪ The trace operator of order zero 

         𝛾0 ∶  𝐻
1(Ω) → 𝐻1/2(𝜕Ω)                                                                                                                               (9) 

is linear, subjective, and continuous [3], such that 𝑥0
Γ is the restriction of the trace of the initial state 𝑥0 to Γ.  

𝛾0
∗ denote the adjoint of 𝛾0   given by 

         𝛾0
∗ :𝐻1/2(𝜕Ω) → 𝐻1(Ω)                                                                                                                               (10) 

▪ For a sub-region  Γ ⊂ 𝜕Ω and let 𝜒Γ be the restriction function defined by          

       
 𝜒 𝛤 :𝐻

1/2(𝜕Ω) → 𝐻1/2(Γ)   

                           𝑥 →  𝜒𝛤𝑥 = 𝑥|Γ
                                                                                                                       (11) 

where  𝑥|Γ is the restriction of 𝑥   to Γ.  We denote by 𝜒Γ
∗  the adjoint of  𝜒Γ and defined by 

          𝜒Γ
∗ ∶ 𝐻1/2(Γ) →  𝐻1/2(𝜕Ω)                                                                                                                          (12) 

Now, to characterize strategic sensors notion, we need some results of regional boundary observability 

concept in space 𝐻1/2(Γ) is extended from ref. [12, 22]. 

Definition 2.1: The system (4) augmented with the output function (2) is said to be exactly observable on Ω 

(or exactly  Ω-observable), if 

          Ιm (𝐾∗ ) = 𝐻1(Ω)                                                                                                                                       (13)  

Definition 2.2: The system (4)-(2) is said to be approximately observable on Ω (or approximately  Ω-

observable), if 

          𝐼𝑚 (𝐾∗ (. )̅̅ ̅̅̅ ̅̅ ) = 𝐻1(Ω) 

Definition 2.3: The system (4)-(2) is said to be regional boundary exactly observable on  Γ (or exactly  Γ-

observable), if 

          Ιm (𝜒Γ𝛾0𝐾
∗ ) = 𝐻1/2(Γ)                                                                                   

Definition 2.4: The system (4)-(2) is said to be regional boundary approximately observable on  Γ (or 

approximately  Γ-observable), if 

          𝐼𝑚 (𝜒Γ𝛾0𝐾
∗(. )̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ) = 𝐻1/2(Γ)                                                                                                                        (14)  

Remark 2.5: The definition 2.4 is equivalent to say that the system (4)-(2) is approximately Γ-observable if 

          𝐾𝑒𝑟 (𝐾(. ) 𝛾0
∗𝜒 Γ

∗ )  = {0}                                                                                                                           (15) 

Then, the following results can be extended from [2] to the regional boundary. 

Proposition 2.6: The system (4)-(2) is exactly  Γ-observable if there exists 𝜈 > 0  such that   ∀ 𝑥0  ∈  𝐻
1/2(Γ),  

          ‖𝑥0‖𝐻1/2(Γ)  
≤ ν‖𝛫𝛾0

∗ 𝜒 Γ
∗  𝑥0 ‖𝐿2( 0,∞,𝒪)                                                                                                            (16) 

Proof: The proof of this property is deduced from the usual results on observability by considering   𝜒Γ𝛾0 𝐾
∗  

as in [4]. Let 𝐸, 𝐹 and 𝐺 be Banach reflexive space and 𝑓 ∈  𝐿(𝐸, 𝐺), 𝑔 ∈  𝐿(𝐹, 𝐺), then we have 

     (1) 𝐼𝑚 𝑓 ⊂  𝐼𝑚 𝑔 

     (2) there exists 𝑐 >  0 such that 
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           ‖𝑓∗𝑥∗‖𝛦∗ ≤ 𝑐 ‖𝑔
∗𝑥∗‖𝐹∗ , ∀𝑥

∗ ∈ 𝐺∗.      

Now, if this result is applied. Choosing 

          𝐸 = 𝐺 = 𝐻1/2(Γ),    𝐹 = 𝒪,    𝑓 =  𝐼𝑑 𝐻1/2(Γ)  

and 

          𝑔 =   𝜒Γ𝛾0 𝐾
∗ ,  

therefore, we obtain the inequality (14) ∎. 

Corollary 2.7: From the pervious proposition 2. 6 we can get the following result:   

(1) The notion of approximate Γ-observability is far less restrictive than the exact Γ-observability. 

(2) From the equation (14) there exists a reconstruction error operator that gives an estimation  𝑥0  of  the 

initial state  𝑥0 in 𝛤 [22]. Then, we have 

          ‖𝑥0−  𝑥0‖𝐻1/2(Γ) ≤  ‖𝑥0−  �̃�0 ‖𝐻1/2(𝜕Ω)                                                                                                                 (17)  

Proposition 2.8: The regional boundary observability concept is more convenient for the analysis of real 

systems [20]. Then, we can deduce that: 

(1) The definitions 2.3 and 2.4 are more general and can be applied to the case where  Γ = 𝜕Ω.  

(2) The equation (17) shows that the regional boundary state reconstruction will be  more precise than if we 

estimate the state in the boundary of the domain Ω. 

(3) If a system is exactly  Ω-observable, then, it is exactly Γ-observable, but the converse is not true in general. 

Now, we prove that property (3) of remark 2.6. 

Proof: We see that if the system is exactly observable on 𝜕Ω, then it is exactly Γ-observable and this is a 

consequence of (17) and then  

          ‖𝑥0‖𝐻1/2(Γ) ≤ ‖𝑥0‖𝐻1/2(∂Ω) ,  
 ∀𝑥0 ∈ 𝐻

1/2(Γ)                                                                                                  (18) 

by the same way with miner tanique as in regional case [12], we can show that, if  Γ ⊂ 𝜕Ω,   then  

          |𝑥0|Γ ≤ |𝑥0|∂Ω                                                                                                                                             (19) 

and hence  

          ‖𝑥0‖𝐻1/2(Γ) ≤ ‖𝑥0‖𝐻1/2(∂Ω)                                                                                                                          (20) 

From equations  (16), (17), (18), (19), and  (20), we have 

         ‖ 𝑥0‖𝐻1/2(Γ)    = ‖ 𝑥0‖𝐿(𝐻1/2(Γ),𝐻1/2(∂Ω)) 

                                                    ≤ ‖𝑥0‖𝐻1/2(∂Ω) 

                                                    ≤ 𝜈‖𝛫𝛾0
∗ 𝜒 Γ

∗  𝑥0‖𝐿2( 0,𝑇,𝑂)         

Then from proposition 2.6 and remark 2.5, we can deduce that the system (4)-(2) is exactly Γ-observable. 
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3. SUFFICIENT CONDITIONS FOR   𝚪-STRATEGIC SENSORS 

The purpose of this section is to give the sufficient condition for the characterization of sensors in order that 

the system (1) is regionally boundary approximately observable in a region Γ. 

3.1 Concept of Sensors 

This subsection recalls and studies the concept of the sensors, which was introduced by A. El Jai [6-7]. Thus, we 

know that the sensors form an important link between a system and its environment [17-18]. In any case of 

sensors is considered via a space variable, mathematically speaking, the space variable is present in all systems 

described by partial differential equations [12]. 

Definition 3.1: A sensor may be defined by any couple (𝐷, 𝑓),  where 𝐷 , a non-empty closed subset of Ω,̅  is 

the spatial support of sensor and 𝑓 ∈ 𝐿(𝐷) defines the spatial distribution of the sensing measurements on 𝐷 . 

Remark 3.2: According to the choice of the parameters 𝐷𝑖   and  𝑓𝑖    we have various types of sensors.  Sensor 

may be a zone types denoted by (𝐷𝑖 , 𝑓𝑖 ), where 𝐷𝑖 ⊂ Ω, then, the output function (2) can be written in the form 

          𝑦(. , 𝑡) = 𝐶 𝑥(. , 𝑡) =  ∫
𝐷𝑖  
𝑥(𝜉 , 𝑡) 𝑓𝑖  (𝜉)𝑑𝜉                                                                     (21)  

Also, sensors maybe pointwises when 𝐷𝑖 =  {𝑏𝑖} and  𝑓𝑖  = 𝛿𝑏𝑖(𝜉 −  𝑏𝑖) represented by the couple (𝑏𝑖 , 𝛿𝑏𝑖 )where 

𝛿𝑏𝑖  is the  Dirac mass concentrated in 𝑏𝑖 . Thus, the  output function (2) can be given by the form 

         𝑦(. , 𝑡) = 𝐶 𝑥(. , 𝑡) =  ∫
Ω 
𝑥(𝜉  , 𝑡)𝛿𝑏𝑖  

(𝜉 − 𝑏𝑖)𝑑𝜉                                                                                             (22) 

In the case of  boundary zone sensors (𝛤𝑖 , 𝑓𝑖 ) where  𝐷𝑖  = 𝛤𝑖  with 𝛤𝑖 ⊂ 𝜕Ω  and 𝑓𝑖 ∈ 𝐿
2(𝛤).Therefore, the output 

function (2) can then  be written in the form  

          𝑦(. , 𝑡)  =  𝐶 𝑥(. , 𝑡)  =   ∫
Γi 

𝜕𝑥

𝜕𝑣
(𝜂 , 𝑡)𝑓𝑖   (𝜂)𝑑𝜂                                                                                              (23) 

The operator 𝐶  is unbounded and some precautions must be taken in [3, 11]. 

Definition 3.3: A sensor ( 𝐷, 𝑓 ) is Ω-strategic if the corresponding system (4)-(2) is approximately Ω-

observable. 

Definition 3.4: A suit of  (𝐷𝑖 , 𝑓𝑖 )1≤𝑖≤𝑞   is said to be Ω-strategic if there exists at least one sensor (𝐷1 , 𝑓1 ) which 

is approximately  Ω-strategic. 

Definition 3.5: A sensor ( 𝐷, 𝑓 ) is Γ-strategic if the corresponding system (4)-(2) is approximately Γ-

observable. 

Definition 3.6: A suit of  (𝐷𝑖 , 𝑓𝑖 )1≤𝑖≤𝑞   is said to be Γ-strategic if there exists at least one sensor (𝐷1 , 𝑓1 ) which 

is approximately  Γ-strategic. 

 Thus, we can deduce that the following result: 

Corollary 3.7:  A sensor is Γ-strategic if the corresponding system (4)-(2) is exactly Γ-observable. 

Proof: Let the system (4)-(2) is exactly Γ-observable. Then, we have 

          Ιm(𝜒Γ𝛾0𝐾
∗) = 𝐻1/2(Γ)                                                                                           

From the decomposition sub-spaces of direct sum in Hebert space, we can represent 
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𝐻1/2(Ω)  by the unique form [9] 

          𝐾𝑒𝑟 (𝐾(𝑡)𝛾0
∗  𝜒 Γ

∗  )+ 𝛪𝑚 (𝜒Γ𝛾0𝐾
∗ ) = 𝐻1/2 (∂Ω)                                                                                         (24) 

we obtain  

          𝐾𝑒𝑟 (𝐾(𝑡)𝛾0
∗  𝜒 Γ

∗  ) =  {0} 

This is equivalent to 

          𝐼𝑚 ((𝜒Γ𝛾0 𝐾
∗(. )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ) = 𝐻1/2(Γ) 

Finally, we can deduce this system is approximately Γ-observable and therefore this 

sensor is Γ-strategic.∎ 

Thus, the definition 2.3, proposition 2.6 and corollary 3.7 guarantee Γ-strategic sensors with far more 

restrictive conditions. 

Proposition 3.8: From the previous results, we can deduce that: 

(1) a sensor which is strategic for a system, it is Γ-strategic. 

(2) a sensor which is Γ1-strategic for a system where Γ1 ⊂  ∂Ω,  then, it is  Γ2 -strategic for any Γ2 ⊂ Γ1 .   

(3) One can find various sensors which are not Ω-strategic for the systems, but may be Γ-strategic and achieve 

the observability in Γ. This is illustrated in the following counter-example. 

3.2 Counter-Example 

Consider a two-dimensional systems described the following diffusion equations  

          

{
 
 

 
 𝜕𝑥

𝜕𝑡
(𝜉1 , 𝜉2, 𝑡) =

𝜕2𝑥

𝜕𝜉1
2
(𝜉1, 𝜉2 , 𝑡) +

𝜕2𝑥

𝜕𝜉2
2
(𝜉1,𝜉2 , 𝑡)                   𝒬

𝑥(𝜉1, 𝜉2, 0) = 𝑥0(𝜉1, 𝜉2)                                                        Ω̅
𝜕𝑥

𝜕𝜗
(𝜂1 , 𝜂2, 𝑡) = 0                                                                     Σ

                                                                            (25)  

where Ω = [0, 1] × [0, 1] and Γ = [0, 1] × {0}. The output function is given by 

          𝑦(𝑡) = ∫
Γ0
𝑥(𝜂1, 𝜂2, 𝑡) 𝑓(𝜂1 , 𝜂2) 𝑑𝜂1 𝑑𝜂2                                                                                                     (26) 

 and Γ0 = {0} × [0,1] ⊂ ∂Ω as in (Figure 3).   

 

Fig. 3 :  Domain Ω,  region Γ  and location Γ0  of boundary zone sensor. 

The operator  𝐴 =
𝜕2

𝜕𝜉1
2 +

𝜕2

𝜕𝜉2
2 generates a semi-group (𝑆(𝑡))𝑡≥0  on 𝐻1(Ω)  given by 
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          𝑆(𝑡)𝑦 = ∑ 𝑒𝜆𝑖𝑗𝑡 〈𝑦, 𝜑𝑖𝑗〉𝐻1 (Ω)𝜑𝑖𝑗
∞
𝑖,𝑗=0                                                                                                             (27) 

where  𝜆 𝑖𝑗 = −(𝑖2 + 𝑗2)𝜋2, 𝜑𝑖𝑗 (𝑥1,𝑥2) = 2𝑎𝑖𝑗 cos (𝑖𝜋𝜉1)cos (𝑗𝜋𝜉2)  and 𝑎𝑖𝑗 = (1 − 𝜆 𝑖𝑗)
−1/2 .   

The state 𝑥0(𝜉1,𝜉2) = cos  (𝑖𝜋𝜉1)cos (𝑗𝜋𝜉2)  is not approximitely Ω-observable [11]. Thus, the boundary sensor 

(Γ0, 𝑓) is not Ω-strategic [1]. The systems (25)-(26) is approximately  Γ-observable [22] and then boundary 

sensor (Γ0 , 𝑓) is Γ-strategic [14].  

In this section, we are interested to develop the results which are related to the strategic sensors and give the 

sufficient conditions for each sensor. For this purpose, we assume that there exists a complete se t of 

eigenfunctions 𝜑𝑛  of  𝐴 in 𝐻 1(Ω), associated to the eigenvalues 𝜆𝑛  with a multiplicity 𝑠𝑛   and suppose that 

the functions 𝜓𝑛  defined by  𝜓𝑛 =   𝜒Γ𝛾0𝜑𝑛 is a complete set in 𝐻1/2(Γ) defined by,  is a complete set in  

𝐻1(Ω). If the system (2.1) has 𝐽  unstable modes, then we have the following result. 

Theorem 3.7: Assume that 𝑠𝑢𝑝 𝑟𝑛 = 𝑟 < ∞, then the suite (𝛤𝑖 , 𝑓𝑖 )1≤𝑖≤𝑞 of zones boundary sensors are Γ-

strategic if and only if 

          (1) 𝑞 ≥  𝑟 

          (2) 𝑟𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛  , where  

  𝐺𝑛 = (𝐺𝑛 )𝑖𝑗  with 1 ≤ 𝑖 ≤ 𝑞 , 1 ≤ 𝑗 ≤  𝑟𝑛  and (𝐺𝑛 ) is given by  

           (𝐺𝑛)𝑖𝑗 =  

[
 
 
 
〈𝜑𝑛1 ,𝑓1

(. )〉𝐿(Γ1)
2 ,   .  .  .  , 〈𝜑𝑛𝑟𝑛

, 𝑓1 (. )〉𝐿(Γ1)
2

 
⋮

〈𝜑𝑛11 , 𝑓𝑞
(. )〉𝐿(Γq)

2 ,   .  .  .  , 〈𝜑𝑛𝑟𝑛
, 𝑓𝑞(. )〉𝐿(Γq)

2
]
 
 
 

 

Proof: The proof is developed in the case where the suit of sensors are of boundary  zones type (𝛤𝑖 , 𝑓𝑖 )1≤𝑖≤𝑞 

and located on ∂Ω. If the suit of sensors are Γ-strategic, then the corresponding system (25)-(26) is 

approximately Γ-observable [7], it is equivalent  to 

          [ 𝐾𝛾0
∗ 𝜒Γ

∗ 𝑥∗ = 0 ⟹  𝑥∗ = 0 ], for 𝑥∗ ∈  𝐻1/2(Γ)                                                                                           (28) 

We have 

          

K γ0
*  χΓ

*  x* = (∑ exp
(λnt)∑  〈φnj ,γ0

*  χΓ
*  x*〉H1(Ω)〈φnj , fi〉L2(Γ))1≤i≤q

rn
j=1n≥1

                     = (∑ exp
(λnt)∑  〈χΓγ0φnj ,  x

*〉
H1/2(Γ)

〈φnj , fi〉L2(Γ) )1≤i≤q
rn
j=1n≥1

             = (∑ exp
(λnt)∑  〈ψnj ,  x

*〉
H1/2(Γ)

〈φnj , fi〉L2(Γ))1≤i≤q
rn
j=1n≥1

 

Now, if the suit of sensors is not strategic sensors, then the system (25)-(26) is not approximately Γ -

observable, and hence there exists 𝑥∗ ≠ 0  such that  

          𝐾𝛾0
∗𝑥Γ

∗ 𝑥∗ =  0 ⟺  ∑ 〈𝜓𝑛𝑗 ,𝑥
∗ 〉
𝐻1/2(Γ)

〈𝜑𝑛𝑗,𝑓𝑖 〉𝐿2(Γ)  = 0  ∀𝑛, 𝑛 ≥ 1    
𝑟𝑛
𝑗=1  

Suppose that 𝑥𝑛 defined by 

          𝑥𝑛 = [

〈𝜓𝑛1 , 𝑥
∗〉
𝐻1/2(Γ)

⋮
〈𝜓𝑛𝑟𝑛

, 𝑥∗〉𝐻1/2(Γ)

]                                                                                                                            (29) 

Then  

          𝐺𝑛𝑥𝑛 =  0 ,   ∀ 𝑛 ≥ 1   ⟺    𝑟𝑎𝑛𝑘  𝐺𝑛 ≠   𝑟𝑛 .   
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Conversely, if rank 𝐺𝑛 ≠   𝑟𝑛    for some 𝑛, then there exists 

          𝑥𝑛 = [

𝑥𝑛1
⋮

𝑥𝑛𝑟𝑛

] ≠ 0,  𝑥∗ =   ∑  𝑥𝑛𝑗 𝜓𝑛𝑗     ∈  𝐻
1/2(Γ)  ≠ 0

𝑟𝑛
𝑗=1  

such that 

          𝐺𝑛𝑥𝑛 =  0 

Thus, we can find a non-zero x* ∈  H1/2(Γ)  such that 

          〈𝑥∗,𝜓𝑗𝑘 〉𝐻1/2(Γ) = 0  if   𝑗 ≠ 𝑛  

and  

          〈𝑥∗,𝜓𝑛𝑘 〉𝐻1/2(Γ) = 𝑥𝑛𝑘 , 1 ≤ 𝑘 ≤ 𝑟𝑛    

 For which   ∑ 〈𝜑𝑗𝑘 ,𝑓𝑖 〉Γi  
〈𝑥∗,𝜓𝑗𝑘 〉𝐻1/2(Γ) = 0     𝑗 ≠ 𝑛 , 1 ≤ 𝑖 ≤ 𝑞

𝑟𝑗

𝑘=1
    

and also 

           ∑ 〈𝜑𝑛𝑘 ,𝑓𝑖 〉Γi  
〈𝑥∗,𝜓𝑛𝑘 〉𝐻1/2(Γ) = 0 , 1 ≤ 𝑖 ≤ 𝑞

𝑟𝑗

𝑘=1
 

otherwise there exists 𝑥∗  ≠ 0 ∈  𝐻1/2(Γ), such that 

          𝐾 𝛾0
∗𝑥Γ

∗  𝑥∗ = 0,  

Thus, the system (25)-(26) is not approximately  Γ-observable and then the sensors are not Γ -strategic.∎ 

Corollary 3.8: If the system (25)-(26) is exactly Γ-observable, then, the rank condition in theorem 3.7 is 

satisfied. 

Remark 3.9: The previous result can be extended to the case of internal zone, filament and internal o r 

boundary sensors as in ref.s [12-16]. 

Remark 3.10: The important to introduce this notion is that the using to charaterize the regional boundary 

exponential reduced observability in distributed parameter system as in [24] and this notion is extended to 

mutipule situations for finite time interval [25-26] or infinite as in [27-29]. 

4. APPLICATION TO SENSOR LOCATIONS 

In this section, we present an application of the above results in two-dimensional systems defined on Ω =

[0, 𝑎1]  × [0, 𝑎2 ] by the form   

          

{
 

 
𝜕𝑥

𝜕𝑡
 (𝜉1, 𝜉2, 𝑡) =  𝛥𝑥(𝜉1, 𝜉2 , 𝑡)                 Θ

𝑥(𝜉1, 𝜉2, 0) = 𝑥0(𝜉1 ,𝜉2)                         Ω̅
𝜕𝑥

𝜕𝜗
(𝜂1 ,𝜂2, 0) =  0                                     Π

                                                                                                    (30) 

together with output function is described by (2). Let  Γ = {𝑎1} × (0, 𝑎2) be the considered region is  subset of 

[0, 𝑎1]  × [0, 𝑎2 ].  In this case, the eigenfunctions of system (30) are given by 

          𝜑𝑖𝑗(𝜉1, 𝜉2) =  
2

√ 𝑎1𝑎2  
𝑐𝑜𝑠 𝑖𝜋 (

𝜉1

𝑎1
)𝑐𝑜𝑠 𝑗𝜋(

𝜉2

𝑎2
)                                                                                                 (31) 

associated with eigenvalues  
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          𝜆𝑖𝑗 = −(
𝑖2

(𝑎1)
2 + 

𝑗2

(𝑎2)
2)                                                                                                                                (32)                                                   

The following results give information on the locations of internal, boundary  zone or pointwise Γ-strategic 

sensors. 

4.1 Zone Sensor Cases 

This subsection study various types of  domains with different systems. 

4.1.1 Rectangular domain 

We discuss and examine different type of zone sensors. 

Internal rectangular zone case: 

Consider the system (30)-(2) where the sensor supports 𝐷  are located inside Ω. Then the output (2) can be 

written by the form 

          𝑦(𝑡) = ∫
𝐷 
𝑥(𝜉1,𝜉2 , 𝑡)𝑓𝑖  (𝜉1 , 𝜉2)𝑑𝜉1𝑑𝜉2                                                                                                       (33)   

where 𝐷 ⊂ Ω  is location of zone sensor and  𝑓 ∈ 𝐿2(𝐷). In this case of (Figure 4), the eigenfunctions and the 

eigenvalues 

 

Fig. 4: Domain Ω, region Γ and location D of internal zone sensor. 

are given by (31) and (32). However, if we suppose that  

          
(𝑎1)

2

(𝑎2)
2 ∉ ℕ                                                                                                                                                    (34) 

where  ℕ is the natural numbers. If 𝑟 = 1 then one sensor (𝐷, 𝑓) maybe suffices to achieve Γ-strategic sensor of 

the corresponding systems (30)-(33) [9-11]. Let the measurement support is rectangular with 

          𝐷 = [𝜉1− 𝑙, 𝜉1 + 𝑙1]× [𝜉2− 𝑙2, 𝜉2 + 𝑙2] ∈ Ω 

then, we have the following result. 

Corollary 4.1: If  𝑓1  is symmetric about 𝜉1 =  𝜉01   and  𝑓2   is symmetric about 𝜉2 =  𝜉02 , then the sensor (𝐷, 𝑓) 

is Γ-strategic to the systems (30)-(33)  if  𝑖 (𝜉01 ) (𝑎1)⁄   and 𝑗 (𝜉02) (𝑎2 )⁄ ∉  ℕ for every 𝑖, 𝑗 = 1, … , 𝐽 

One side boundary zone case: 

In the case where Γ0 ⊂ ∂Ω and 𝑓 ∈ 𝐿2(Γ0 ), the sensor (Γ0 , 𝑓) is located on the one side of the boundary 𝜕𝛺  in 

Γ0 = [(𝜂01 − 𝑙, (𝜂02 − 𝑙] × {𝑎2} as in (Figure 5). Consider again the systems (30)-(33), then the output function is 

given by 
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         𝑦(𝑡) = ∫
Γ0
𝑥(𝜂1,𝜂2, 𝑡) 𝑓(𝜂1 , 𝜂2) 𝑑𝜂1 𝑑𝜂2                                                                                                      (35) 

then, we obtain. 

 

Fig. 5:   Domain Ω,  region Γ and location Γ0  of boundary on one side zone sensor. 

Corollary 4.2: Suppose that f is symmetric with respect to 𝜂1 = 𝜂01, then the sensor (Γ0 , 𝑓) is Γ-strategic to the 

systems (30)-(35) if 𝑖 (𝜂01 ) (𝑎1)⁄ ∉  ℕ for every 𝑖 = 1, … , 𝐽. 

Two sides boundary zone case: 

Suppose that  the sensor (Γ̅, 𝑓) is located on Γ̅ = [0, 𝜂̅01 + 𝑙1] × {0} ∪ {0} × [0, 𝜂̅02 + 𝑙2] = Γ̅1 ∪ Γ̅2 ⊂ ∂Ω  and 𝑓Γ̅1  

is symmetric with respect to 𝜂̅1 = 𝜂̅01 and the function 𝑓 Γ̅2  is symmetric with respect to 𝜂̅2 =  𝜂̅02 as in (Figure 

6). Thus,  the output function is given by 

          𝑦(𝑡) = ∫
Γ̅ 
𝑥(𝜂1, 𝜂2, 𝑡) 𝑓(𝜂1 , 𝜂2) 𝑑𝜂1 𝑑𝜂2                                                                                                      (36)  

then we have. 

 

Fig. 6:   Domain Ω,  region Γ and location Γ̅ of two sides zone sensor. 

Corollary 4.3: If  𝑓1  is symmetric about 𝜂̅1 =  𝜂̅01 and 𝑓2 is symmetric about 𝜂̅2 = 𝜂̅02 then the sensor (Γ, 𝑓) is 

Γ-strategic to the systems (30)-(36) if 𝑖 (𝜂̅01) (𝑎1)⁄   and  𝑗 (𝜂̅02) (𝑎2 )⁄ ∉  ℕ for every 𝑖, 𝑗 = 1, … , 𝐽 . 

4.1.2 Disc domain 

We explore some results concern different type of zone sensors in disc domain.  

Internal circular zone case:  

In this case, systems (30) may  be given by the following  form 

          

{
 

 
𝜕𝑥

𝜕𝑡
 (𝑟 ,𝜃, 𝑡) =  𝛥𝑥(𝜉1 , 𝜉2, 𝑡)                  Θ

𝑥(𝑟, 𝜃, 0) = 𝑥0(𝑟,𝜃)                             Ω̅
𝜕𝑥

𝜕𝜗
(𝑎 , 𝜃,𝑡) =  0                                     Π

                                                                                                       (37) 

where 0 < 𝜃 < 2𝜋 , Ω = (0, 𝑎),  𝑟 = 𝑎 > 0, and 𝜃 ∈ [0, 2𝜋], 𝑡 > 0 are defined as in (Figure 7). The augmented 

output function described by 
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          𝑦𝑖 (𝑡) = ∫
𝐷𝑖  
𝑥(𝑟, 𝜃, 𝑡)𝑓𝑖  (𝑟𝑖 , 𝜃𝑖 )𝑑𝑟𝑖𝑑𝜃𝑖                                                                                                            (38)                       

 

Fig. 7:  Disc domain Ω, region Γ and  locations 𝐷1,𝐷2 of internal pointwise sensors. 

Let the eigenfunctions and eigenvalues concerning the region Γ = (𝑎,  𝜃𝑖 )2≤𝑖≤𝑞  of   ∂Ω with ∈ [0, 2𝜋]  are 

defined 

          𝜆𝑖𝑗 = 𝛽𝑖𝑗
2 , 𝑖 ≥ 0, 𝑗 ≥ 1                                                                                                                                 (39)  

where  𝛽𝑖𝑗 nm   are the zeros of the Bessel functions 𝐽𝑛 and 

         

          {

𝜓𝑖𝑗 (𝑟, 𝜃) = 𝐽0(𝛽𝑖𝑗
2𝑟),                                𝑗 ≥ 1

𝜓𝑖𝑗 (𝑟, 𝜃) = 𝐽𝑛(𝛽𝑖𝑗1
2  𝑟) cos(𝑖𝜃)          𝑖, 𝑗1 ≥ 1

𝜓𝑖𝑗 (𝑟, 𝜃) = 𝐽𝑛(𝛽𝑖𝑗2
2 𝑟) sin(𝑖𝜃}           𝑖, 𝑗2  ≥ 1

                                                                                              (40)  

with multiplicity  𝑆𝑖𝑗 = 2 for all  𝑖𝑗 ≠ 0 and 𝑆𝑖𝑗 = 1  for all 𝑖𝑗 = 0.  In this case, the Γ-strategic sensor is required 

at least two zone sensors   (𝐷𝑖 , 𝑓𝑖 )2≤𝑖≤𝑞 where  𝐷𝑖 = (𝑟𝑖 , 𝜃𝑖 ), 𝑖 = 1,2 (see [14]). If we consider the case of Dirichlet 

or  mixed boundary conditions, we can get various functions [2]. Thus, we develop some practical examples by  

using the symmetry conditions. If  𝑓𝑖  and  𝐷𝑖   are symmetric with respect to  𝜃 = 𝜃𝑖 , for all 2 ≤ 𝑖 ≤ 𝑞, then we 

have . 

Corollary 4.4: If the sensors (𝐷𝑖 , 𝑓𝑖 )2≤𝑖≤𝑞 are located in 𝐷𝑖 = (𝑟𝑖 , 𝜃𝑖 ), 𝑖 = 1,2 and  

𝑖 (𝜃1 − 𝜃2 ) 𝜋 ∉  ℕ for every  𝑖, 𝑗 = 1, … , 𝐽⁄ , then (𝐷1 , 𝑓1 ) and (𝐷2, 𝑓2 ) are is Γ-strategic to the systems (37)-(38). 

 Boundary circular zone case: 

In this case the system (30) is augmented with output function described by 

          𝑦𝑖 (𝑡) = ∫
𝜕Ω 
𝑥(𝑟, 𝜃, 𝑡)𝛿Γ𝑖  

(𝑟 − 𝑟𝑖 , 𝜃 − 𝜃𝑖 )𝑑𝑟𝑖𝑑𝜃𝑖                                                                                            (41)  

 

Fig. 8:  Disc domain Ω, region Γ and  locations Γ1, Γ2  of internal pointwise sensors. 
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When the sensors (Γ𝑖 , 𝑓)2≤𝑖≤𝑞  are located on 𝜕Ω and the function 𝑓Γ𝑖 is symmetric with respect to  𝜃 = 𝜃𝑖, for 

all 2 ≤ 𝑖 ≤ 𝑞,  as in  (Figure 8). So, we have. 

Corollary 4.5: If the sensors (Γ𝑖 , 𝑓𝑖 )2≤𝑖≤𝑞 are located in Γ𝑖 = (𝑎 , 𝜃𝑖 ), 𝑖 = 1, 2 and  

𝑖 (𝜃1 − 𝜃2 ) 𝜋 ∉  ℕ for every  𝑖, 𝑗 = 1, … , 𝐽⁄ , then (Γ1 , 𝑓1 ) and (Γ2, 𝑓2 ) are Γ-strategic to the systems (37)-(41). 

                               

4.2 Pointwise Sensor Cases 

This subsection study again various types of  domains in different systems.  

4.2.1 The domain 𝛀 = [𝟎, 𝒂𝟏]  × [𝟎, 𝒂𝟐] 

We deal with different type of pointwise sensors. 

Internal pointwise case: 

Let us consider the case of pointwise sensor located inside of Ω. Thus, the system (30) is augmented with the 

following output function. 

          𝑦(𝑡) = ∫ 𝑥(𝜉1,𝜉2 , 𝑡)𝛿 (𝜉1− 𝑏1,𝜉2 − 𝑏2)𝑑𝜉1𝑑𝜉2Ω                                                                                         (42) 

where  𝑏 = (𝑏1, 𝑏2)  is the location of pointwise sensor as defined in (Figure 9) 

 

Fig. 9: The domain Ω, region Γ and location 𝑏 of internal pointwise sensor. 

In this case may be one pointwise sensor (𝑏, 𝛿𝑏 ) is sufficient for strategic sensor on Γ of systems (30)-(42). 

Thus, we obtain the following result. 

Corollary 4.6: The sensor (𝑏, 𝛿𝑏) is Γ-strategic to the systems (30)-(42) if  𝑖(𝑏1)/(𝑎1)  and 𝑗(𝑏2)/(𝑎2)  ∉ ℕ,  

for every  𝑖, 𝑗 = 1, … , 𝐽. 

Internal filament case: 

Consider the case where the information is given on the curve  𝜎 = 𝐼𝑚 (𝛾) with 𝛾 𝜖 𝐶 1(0, 1) (Figure 10).   

 

Fig. 10: The domain Ω, and location σ  of internal filament sensors. 
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If the measurements recovered by filament sensor (𝜎, 𝜎 𝑏 )  such that is symmetric with respect to the line  𝑏 =

𝑏𝑖 , then we have. 

Corollary 4.7: The sensor (𝜎, 𝜎 𝑏) is Γ -strategic to the systems (30)-(42) if 𝑖(𝑏1)/𝑖(𝑎1)  and 𝑖(𝑏2)/𝑖(𝑎2 )  ∉ ℕ,  

for every 𝑖. 

Boundary pointwise case: 

Now, the system (30) is augmented with the following output function.  

          𝑦(𝑡) = ∫ 𝑥(𝜉1, 𝜉2 , 𝑡)𝛿 (0, 𝜉2 − 𝑏2)𝑑𝜉2∂Ω                                                                                                       (43)  

where  𝑏 = (0, 𝑏2)  is the location of pointwise sensor (𝑏, 𝛿𝑏) as defined in (Figure 11). 

 

Fig. 11: The domain Ω, and location 𝑏  of boundary pointwise sensor. 

Thus, we obtain the following result. 

Corollary 4.8: The sensor (𝑏, 𝛿𝑏) is Γ -strategic to the systems (30)-(43) if  𝑖(𝑏2)/(𝑎2 )  ∉ ℕ,  for every  𝑖 = 1, … , 𝐽. 

4.2.2 The domain 𝛀 = [𝟎, 𝒂𝟏]  × [𝟎, 𝒂𝟐] 

We discuss and examine different type of zone sensors. 

Internal pointwise case: 

Here, the system (37) is augmented with the following output function. 

          𝑦𝑖 (𝑡) = ∫
Ω 
𝑥(𝑟, 𝜃, 𝑡)𝛿𝑝𝑖  

(𝑟 − 𝑟𝑖 , 𝜃 − 𝜃𝑖 )𝑑𝑟𝑖𝑑𝜃𝑖                                                                                              (44)  

where 0 < 𝜃 < 2𝜋 , Ω = (0, 𝑎), and  𝑟 = 𝑎 > 0. The locations of pointwise sensors (𝑝𝑖 , 𝛿𝑝𝑖)2≤𝑖≤𝑞 are (𝑝1 , 𝛿𝑝1), 

(𝑝2, 𝛿𝑝2) with 𝑝1 = (𝑟1, 𝜃1 )  and  𝑝2 = (𝑟2, 𝜃2 ) in Ω (Figure 12), then we can get the following result. 

 

Fig. 12:  Disc domain Ω, region Γand  locations 𝑝1 , 𝑝2  of internal pointwise sensors. 

Corollary 4.9: The sensor (𝑝𝑖 , 𝛿𝑝𝑖)2≤𝑖≤𝑞  are located in 𝑝𝑖 = (𝑟𝑖 , 𝜃𝑖 ) ∈ Ω  is Γ -strategic to the systems (37)-(44) if  

𝑖 (𝜃1 − 𝜃2 ) 𝜋 ∉  ℕ for every  𝑖, 𝑗 = 1, … , 𝐽⁄  
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Boundary pointwise case:  

Here, the system (37) is augmented with the following output function. 

          𝑦𝑖 (𝑡) = ∫
∂Ω 
𝑥(𝑟 , 𝜃, 𝑡)𝛿𝑝𝑖  

(𝑟 − 𝑟𝑖 , 𝜃 − 𝜃𝑖 )𝑑𝑟𝑖𝑑𝜃𝑖                                                                                            (45)  

where 0 < 𝜃 < 2𝜋 , Ω = (0, 𝑎), and  𝑟 = 𝑎 > 0. The locations of pointwise sensors (𝑝1, 𝛿𝑝1), (𝑝2 , 𝛿𝑝2) with 𝑝1 =

(𝑎, 𝜃1 )  and  𝑝2 = (𝑎, 𝜃2 ) in ∂Ω (Figure 13), then we can get. 

 

Fig. 13: Disc domain Ω, region Γand  locations 𝑝1, 𝑝2  of boundary pointwise sensors. 

Corollary 4.10: The sensors (𝑝𝑖 , 𝛿𝑝𝑖)2≤𝑖≤𝑞   are located in 𝑝𝑖 = (𝑎, 𝜃𝑖 ) ∈ ∂Ω are  Γ -strategic to the systems (37)-

(45) if  𝑖 (𝜃1 − 𝜃2 ) 𝜋 ∉  ℕ for every  𝑖, 𝑗 = 1, … , 𝐽⁄ . 

Corollary 4.11: These results can be extended to the following: 

1. Case of Dirichlet or mixed boundary conditions [1-6]. 

2. We can show that the observation error decreases when the number and support of sensors increases [11]. 

5. CONCLUSION 

The notion of regional boundary strategic sensors have been developed and examined. A various regional 

boundary observability have been discussed and analyzed which permit us to avoid some bad sensor 

locations. In addition, many interesting results concerning the choice of such sensors are given and illustrated 

in specific situations with diffusion systems. Thus,  several questions still opened, for example, the simulations 

of this model are under consideration and the problem of finding an optimal sensor location ensuring such an 

objective. 
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