A Portable EEG-Based Sleep Monitoring and Real-Time Feedback System Without Cloud Infrastructure
DOI:
https://doi.org/10.24297/ijct.v25i.9763Keywords:
EEG, BCI, Sleep Monitoring, Deep learning, Data ProcessingAbstract
This paper presents a mobile real-time sleepL. W. et al., 2023; S. Z. et al., 2024; X. M. et al., 2024; Y. E. et al., 2024;
Jirakittayakorn et al., 2024 staging system using EEG signalsA. A. et al., 2023; H. P. et al., 2022; J. K. L. et al.,
2023; P. J. et al., 2023; S. D. et al., 2023; T. L. et al., 2025; X. Z. et al., 2024a collected from the Muse headband. It
employs a lightweight deep neural network, EEGNetG. L. et al., 2024; V. J. L. et al., 2018a; W. C. et al., 2024, to
classify wakefulness, light sleep, and deep sleep. Designed for Android smartphonesS. B. et al., 2017; S. K. et al., 2023;
X. Z. et al., 2024b, EEG signals are transmitted via Bluetooth for local preprocessing and inference, reducing latency
and preserving privacy. Tests with five healthy subjects showed a classification accuracy of 89.4%, closely aligning with results from traditional polysomnography. The system also features sleep-stage-based interventions, such as adaptive white noise playback, enhancing user sleep experience. Compared to conventional EEG devices, the Muse-based system offers greater comfort, portability, and compliance for long-term use. Results highlight the potential of combining consumer-grade EEG and mobile deep learning for accurate real-time sleep monitoring and personalized sleep health managementM. S. et al., 2018; T. Z. et al., 2023; Lai et al., 2018.
Downloads
References
Chen, W., Li, J., & Liu, Y. (2024). Am-eegnet: An advanced multi-input deep-learning framework for eeg classification. Neurocomputing, 530, 14–25. https://doi.org/10.1016/j.neucom.2024.127622
et al., A. A. (2023). Eeg-based epileptic seizure detection using binary dragonfly optimization and cnn. Scientific Reports. https://doi.org/10.1038/s41598-023-44318-w et al., A. S. (2020). Polysomnography: Current applications, limitations, and future directions. Journal of Clinical Sleep Medicine, 16(2), 173–185. https://doi.org/10.5664/jcsm.8160 et al., G. L. (2024). Lma-eegnet: A lightweight multi-attention network for neonatal seizure diagnosis. Electronics, 13(12). https://doi.org/10.3390/electronics13122354 et al., H. M.-E. (2004). Short sleep duration is associated with increased risk of hypertension and metabolic syndrome. Hypertension, 43(4), 795–801. https://doi.org/10.1161/01.HYP.0000116740.66478.18 et al., H. P. (2022). Non-invasive mobile eeg as a tool for seizure monitoring and management: A systematic review. Epilepsy Behavior. https://doi.org/10.1111/epi.17220 et al., J. K. L. (2023). Eeg datasets for seizure detection and prediction—a review. Frontiers in Neuroinformatics. https://doi.org/10.1002/epi4.12704 et al., L. W. (2023). Seriessleepnet: An eeg time-series model with partial data augmentation for automatic sleep stage classification. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.3389/fphys.2023.1188678 et al., M. L. (2013). Sleep supports t-cell immunity and antigen-specific antibody responses during slow-wave sleep: Evidence from vaccination studies. Frontiers in Immunology, 4. https://doi.org/10.3389/fimmu.2013.00310 et al., M. S. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proc. CVPR, 4510–4520. https://doi.org/ 10.1109/CVPR.2018.00474 et al., P. J. (2023). Introducing a new mobile electroencephalography system ‘dreammachine’ and open-source framework. Sensors. https://doi.org/10.3390/s23177440 et al., S. B. (2017). Eeg recording and online signal processing on android: A multi-app framework for brain–computer interfaces on smartphones. BioMed Research International. https://doi.org/10.1155/2017/3072870 et al., S. D. (2017). Wearable eeg: What is it, why is it needed, and what does it promise? Neuroimage, 159, 7–12. https://doi.org/10.1016/j.neuroimage.2017.06.063 et al., S. D. (2023). The moving wave: Applications of the mobile eeg approach to study human cognition. Psychophysiology. https://doi.org/10.1111/psyp.14603 et al., S. K. (2023). Application of a low-cost mhealth solution for remote epileptic-seizure classification using eeg on android. JMIR Neuro. https://doi.org/10.2196/50660 et al., S. Z. (2024). A review of automated sleep stage classification based on eeg signals. Biosystems Engineering. https://doi.org/10.1016/j.bbe.2024.06.004 et al., T. L. (2025). Recent applications of eeg-based brain–computer interfaces in the medical field: A comprehensive review. Military Medical Research. https://doi.org/10.1186/s40779-025-00598-z et al., T. Z. (2023). Deep learning on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM Computing Surveys, 55(6), 1–38. https://doi.org/10.1145/3503414 et al., V. J. L. (2018a). Eegnet: A compact convolutional neural network for eeg-based brain–computer interfaces. Journal of Neural Engineering, 15(5). https://doi.org/10.1088/1741-2552/aace8c et al., V. J. L. (2018b). Eegnet: A compact convolutional neural network for eeg-based brain–computer interfaces. Journal of Neural Engineering, 15(5). https://doi.org/10.1088/1741-2552/aace8c et al., W. C. (2024). Am-eegnet: An advanced multi-input deep-learning framework for eeg classification. Neurocomputing. https://doi.org/10.1016/j.neucom.2024.127622 et al., X. M. (2024). Study on the classification of sleep stages in eeg signals based on doublelinksleepclnet. Sleep and Breathing, 28(5), 2055–2061. https://doi.org/10.1007/s11325-024-03112-2 et al., X. Z. (2024a). Eeg-based real-time prediction of cognitive state on smartphone. Proc. ACM IMWUT. https: //doi.org/10.1007/978-981-99-3963-3_12
et al., X. Z. (2024b). Eeg-based real-time prediction of cognitive state on smartphone. Proc. ACM IMWUT. https: //doi.org/10.1007/978-981-99-3963-3_12 et al., Y. E. (2024). Machine learning-empowered sleep staging classification using multi-modal polysomnography signals. BMC Medical Informatics and Decision Making. https://doi.org/10.1186/s12911-024-02522-2 et al., Z. U. (2025). Sleep disorders increase the risk of dementia, alzheimer’s disease, and cognitive decline: A meta-analysis. GeroScience. https://doi.org/10.1007/s11357-025-00789-4 Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10–20 system electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376–382. https://doi.org/10.1016/00134694(87)90206-9 Jirakittayakorn, N., Wongsawat, Y., & Mitrirattanakul, S. (2024). Zleepanlystnet: A novel deep learning model for automatic sleep stage scoring based on single-channel raw eeg data. Scientific Reports, 14, 9859. https: //doi.org/10.1038/s41598-024-60796-y Lai, L., Suda, N., & Chandra, V. (2018). Cmsis-nn: Efficient neural network kernels for arm cortex-m cpus. https: //doi.org/10.48550/arXiv.1801.06601 Li, T., Liu, Y., & Zhao, Q. (2020). Edge computing for real-time eeg signal processing: A review. IEEE Access, 8, 101652–101666. https://doi.org/10.1109/ACCESS.2020.2998982 Miorandi, D., Sicari, S., Pellegrini, F. D., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016 Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186 TensorFlow Lite. (2017). Tensorflow lite: Tensorflow for mobile and embedded devices. Wang, H., Lin, Y., & Ma, X. (2022). Real-time smartphone-based sleep staging using one-channel eeg (Technical Report). MIT Media Lab. https://doi.org/10.1109/BSN.2019.8771091 Xu, L. D., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243. https://doi.org/10.1109/TII.2014.2300753 Zhang, X., Wang, Y., & Chen, L. (2019). Preprocessing and artifact removal of eeg signals: A review. IEEE Access, 7, 144260–144282. https://doi.org/10.1109/ACCESS.2019.2941883
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jinsha Liu, Chengyuan Shen, Jianting Cao

This work is licensed under a Creative Commons Attribution 4.0 International License.
