Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation
DOI:
https://doi.org/10.24297/ijct.v24i.9567Keywords:
k-fold cross-validation, convolutional neural networks, data augmentation, deep sleepAbstract
Sleep is a necessary process that individuals undergo daily for physical recovery, and the proportion of deep sleep in the sleep stages is a critical aspect of the recovery process. Convolutional Neural Networks (CNNs) have shown remarkable success in automatically identifying deep sleep stages through the analysis of electroencephalogram (EEG) signals. This article introduces three data augmentation techniques, including time shifting, amplitude scaling and noise addition, to enhance the diversity and features of the data. These techniques aim to enable machine learning models to extract features from various aspects of sleep EEG data, thus improving the model’s accuracy. Three deep learning models are introduced, namely DeepConvNet, ShallowConvNet and EEGNet, for the identification of deep sleep. To evaluate the proposed methods, the Sleep-EDF public dataset was utilized. Experimental results demonstrate that the enhanced dataset formed by applying the three data augmentation techniques achieved higher accuracy in all deep learning models compared to the original dataset. This highlights the feasibility and effectiveness of these methods in deep sleep detection.
Downloads
References
Anicet Zanini, R., & Luna Colombini, E. (2020). Parkinson’s disease emg data augmentation and simulation with
dcgans and style transfer. Sensors, 20 (9), 2605. https://doi.org/10.3390/s20092605
Barnes, C. M., Lucianetti, L., Bhave, D. P., & Christian, M. S. (2015). “you wouldn’t like me when i’m sleepy”:
Leaders’ sleep, daily abusive supervision, and work unit engagement. Academy of Management Journal, 58 (5),
–1437. https://doi.org/10.5465/amj.2013.1063
Basics, B. (2021). Brain basics: Understanding sleep—national institute of neurological disorders and stroke.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer.
Caporale, A., Lee, H., Lei, H., Rao, H., Langham, M. C., Detre, J. A., Wu, P.-H., & Wehrli, F. W. (2021). Cerebral
metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution
oxflow mri with concurrent eeg. Journal of Cerebral Blood Flow & Metabolism, 41 (4), 780–792. https://doi.
org/10.1177/0271678X20919287
Carskadon, M. A., Dement, W. C., et al. (2005). Normal human sleep: An overview. Principles and practice of sleep
medicine, 4 (1), 13–23.
Chen, Z., Cao, J., Cao, Y., Zhang, Y., Gu, F., Zhu, G., Hong, Z., Wang, B., & Cichocki, A. (2008). An empirical eeg
analysis in brain death diagnosis for adults. Cognitive Neurodynamics, 2, 257–271. https://doi.org/10.1007/
s11571-008-9047-z
Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS biology, 6 (8), e216.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273–297. https://doi.org/10.1007/
BF00994018
De Gennaro, L., & Ferrara, M. (2003). Sleep spindles: An overview. Sleep medicine reviews, 7 (5), 423–440.
Eren, L., Ince, T., & Kiranyaz, S. (2019). A generic intelligent bearing fault diagnosis system using compact adaptive 1d
cnn classifier. Journal of Signal Processing Systems, 91, 179–189. https://doi.org/10.1007/s11265-018-1378-3
Fushiki, T. (2011). Estimation of prediction error by using k-fold cross-validation. Statistics and Computing, 21, 137–146.
Guresen, E., & Kayakutlu, G. (2011). Definition of artificial neural networks with comparison to other networks.
Procedia Computer Science, 3, 426–433. https://doi.org/10.1016/j.procs.2010.12.071
Ho, T. K., et al. (1995). Proceedings of 3rd international conference on document analysis and recognition. IEEE,
–282.
Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: Neuronal systems, consciousness and
learning. Nature Reviews Neuroscience, 3 (9), 679–693.
Iber, C. (2007). The aasm manual for the scoring of sleep and associated events: Rules, terminology, and technical
specification. (No Title).
Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series classification with neural
networks. Plos one, 16 (7), e0254841.
(JSSR): S. C. C. O. T. J. S. O. S. R. S., Hori, T., Sugita, Y., Koga, E., Shirakawa, S., Inoue, K., Uchida, S., Kuwahara, H.,
Kousaka, M., Kobayashi, T., et al. (2001). Proposed supplements and amendments to ‘a manual of standardized
terminology, techniques and scoring system for sleep stages of human subjects’, the rechtschaffen & kales
(1968) standard. Psychiatry and clinical neurosciences, 55 (3), 305–310. https://doi.org/10.1046/j.1440-
2001.00810.x
Kemp, B., & Olivan, J. (2003). European data format ‘plus’(edf+), an edf alike standard format for the exchange of
physiological data. Clinical neurophysiology, 114 (9), 1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8
Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., & Oberye, J. J. (2000). Analysis of a sleep-dependent neu-
ronal feedback loop: The slow-wave microcontinuity of the eeg. IEEE Transactions on Biomedical Engineering,
(9), 1185–1194. https://doi.org/10.1109/10.867928
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). Eegnet: A compact
convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering, 15 (5),
https://doi.org/10.1088/1741-2552/aace8c
Li, B., & Cao, J. (2023). Classification of coma/brain-death eeg dataset based on one-dimensional convolutional neural
network. Cognitive Neurodynamics, 1–12. https://doi.org/10.1007/s11571-023-09942-2
Mekruksavanich, S., & Jitpattanakul, A. (2022). Cnn-based deep learning network for human activity recognition
during physical exercise from accelerometer and photoplethysmographic sensors. In Computer networks, big
data and iot: Proceedings of iccbi 2021 (pp. 531–542). Springer. https://doi.org/10.1007/978-981-19-0898-9_42
Michel, C. M., & Murray, M. M. (2012). Towards the utilization of eeg as a brain imaging tool. Neuroimage, 61 (2),
–385. https://doi.org/10.1016/j.neuroimage.2011.12.039
Mourtazaev, M., Kemp, B., Zwinderman, A., & Kamphuisen, H. (1995). Age and gender affect different characteristics
of slow waves in the sleep eeg. Sleep, 18 (7), 557–564. https://doi.org/10.1093/sleep/18.7.557
Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: Basic principles, clinical applications, and related
fields. Lippincott Williams & Wilkins.
Ohayon, M. M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep medicine
reviews, 6 (2), 97–111.
Rodriguez, J. D., Perez, A., & Lozano, J. A. (2009). Sensitivity analysis of k-fold cross validation in prediction
error estimation. IEEE transactions on pattern analysis and machine intelligence, 32 (3), 569–575. https:
//doi.org/10.1109/TPAMI.2009.187
Roots, K., Muhammad, Y., & Muhammad, N. (2020). Fusion convolutional neural network for cross-subject eeg motor
imagery classification. Computers, 9 (3), 72. https://doi.org/10.3390/computers9030072
Sanei, S., & Chambers, J. A. (2013). Eeg signal processing. John Wiley & Sons.
Sarangi, S., Sahidullah, M., & Saha, G. (2020). Optimization of data-driven filterbank for automatic speaker verification.
Digital Signal Processing, 104, 102795. https://doi.org/10.1016/j.dsp.2020.102795
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big
data, 6 (1), 1–48. https://doi.org/10.1186/s40537-019-0197-0
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437 (7063), 1272–1278.
Xia, M., Zhao, X., Deng, R., Lu, Z., & Cao, J. (2023). Eegnet classification of sleep eeg for individual specialization
based on data augmentation. Cognitive Neurodynamics, (In press).
Zhao, X., Zhao, Q., Tanaka, T., Solé-Casals, J., Zhou, G., Mitsuhashi, T., Sugano, H., Yoshida, N., & Cao, J. (2023).
Classification of the epileptic seizure onset zone based on partial annotation. Cognitive Neurodynamics, 17 (3),
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ruixuan Chen, Linfeng Sui, Mo Xia, Jinsha Liu, Tao Zhang, Jianting Cao
This work is licensed under a Creative Commons Attribution 4.0 International License.