Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation

Authors

  • Ruixuan Chen Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
  • Linfeng Sui Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
  • Mo Xia Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
  • Jinsha Liu Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
  • Tao Zhang College of Life Sciences, Nankai University, Tianjin, China
  • Jianting Cao Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan

DOI:

https://doi.org/10.24297/ijct.v24i.9567

Keywords:

k-fold cross-validation, convolutional neural networks, data augmentation, deep sleep

Abstract

Sleep is a necessary process that individuals undergo daily for physical recovery, and the proportion of deep sleep in the sleep stages is a critical aspect of the recovery process. Convolutional Neural Networks (CNNs) have shown remarkable success in automatically identifying deep sleep stages through the analysis of electroencephalogram (EEG) signals. This article introduces three data augmentation techniques, including time shifting, amplitude scaling and noise addition, to enhance the diversity and features of the data. These techniques aim to enable machine learning models to extract features from various aspects of sleep EEG data, thus improving the model’s accuracy. Three deep learning models are introduced, namely DeepConvNet, ShallowConvNet and EEGNet, for the identification of deep sleep. To evaluate the proposed methods, the Sleep-EDF public dataset was utilized. Experimental results demonstrate that the enhanced dataset formed by applying the three data augmentation techniques achieved higher accuracy in all deep learning models compared to the original dataset. This highlights the feasibility and effectiveness of these methods in deep sleep detection.

Downloads

Download data is not yet available.

References

Anicet Zanini, R., & Luna Colombini, E. (2020). Parkinson’s disease emg data augmentation and simulation with

dcgans and style transfer. Sensors, 20 (9), 2605. https://doi.org/10.3390/s20092605

Barnes, C. M., Lucianetti, L., Bhave, D. P., & Christian, M. S. (2015). “you wouldn’t like me when i’m sleepy”:

Leaders’ sleep, daily abusive supervision, and work unit engagement. Academy of Management Journal, 58 (5),

–1437. https://doi.org/10.5465/amj.2013.1063

Basics, B. (2021). Brain basics: Understanding sleep—national institute of neurological disorders and stroke.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer.

Caporale, A., Lee, H., Lei, H., Rao, H., Langham, M. C., Detre, J. A., Wu, P.-H., & Wehrli, F. W. (2021). Cerebral

metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution

oxflow mri with concurrent eeg. Journal of Cerebral Blood Flow & Metabolism, 41 (4), 780–792. https://doi.

org/10.1177/0271678X20919287

Carskadon, M. A., Dement, W. C., et al. (2005). Normal human sleep: An overview. Principles and practice of sleep

medicine, 4 (1), 13–23.

Chen, Z., Cao, J., Cao, Y., Zhang, Y., Gu, F., Zhu, G., Hong, Z., Wang, B., & Cichocki, A. (2008). An empirical eeg

analysis in brain death diagnosis for adults. Cognitive Neurodynamics, 2, 257–271. https://doi.org/10.1007/

s11571-008-9047-z

Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS biology, 6 (8), e216.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273–297. https://doi.org/10.1007/

BF00994018

De Gennaro, L., & Ferrara, M. (2003). Sleep spindles: An overview. Sleep medicine reviews, 7 (5), 423–440.

Eren, L., Ince, T., & Kiranyaz, S. (2019). A generic intelligent bearing fault diagnosis system using compact adaptive 1d

cnn classifier. Journal of Signal Processing Systems, 91, 179–189. https://doi.org/10.1007/s11265-018-1378-3

Fushiki, T. (2011). Estimation of prediction error by using k-fold cross-validation. Statistics and Computing, 21, 137–146.

Guresen, E., & Kayakutlu, G. (2011). Definition of artificial neural networks with comparison to other networks.

Procedia Computer Science, 3, 426–433. https://doi.org/10.1016/j.procs.2010.12.071

Ho, T. K., et al. (1995). Proceedings of 3rd international conference on document analysis and recognition. IEEE,

–282.

Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: Neuronal systems, consciousness and

learning. Nature Reviews Neuroscience, 3 (9), 679–693.

Iber, C. (2007). The aasm manual for the scoring of sleep and associated events: Rules, terminology, and technical

specification. (No Title).

Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series classification with neural

networks. Plos one, 16 (7), e0254841.

(JSSR): S. C. C. O. T. J. S. O. S. R. S., Hori, T., Sugita, Y., Koga, E., Shirakawa, S., Inoue, K., Uchida, S., Kuwahara, H.,

Kousaka, M., Kobayashi, T., et al. (2001). Proposed supplements and amendments to ‘a manual of standardized

terminology, techniques and scoring system for sleep stages of human subjects’, the rechtschaffen & kales

(1968) standard. Psychiatry and clinical neurosciences, 55 (3), 305–310. https://doi.org/10.1046/j.1440-

2001.00810.x

Kemp, B., & Olivan, J. (2003). European data format ‘plus’(edf+), an edf alike standard format for the exchange of

physiological data. Clinical neurophysiology, 114 (9), 1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., & Oberye, J. J. (2000). Analysis of a sleep-dependent neu-

ronal feedback loop: The slow-wave microcontinuity of the eeg. IEEE Transactions on Biomedical Engineering,

(9), 1185–1194. https://doi.org/10.1109/10.867928

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). Eegnet: A compact

convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering, 15 (5),

https://doi.org/10.1088/1741-2552/aace8c

Li, B., & Cao, J. (2023). Classification of coma/brain-death eeg dataset based on one-dimensional convolutional neural

network. Cognitive Neurodynamics, 1–12. https://doi.org/10.1007/s11571-023-09942-2

Mekruksavanich, S., & Jitpattanakul, A. (2022). Cnn-based deep learning network for human activity recognition

during physical exercise from accelerometer and photoplethysmographic sensors. In Computer networks, big

data and iot: Proceedings of iccbi 2021 (pp. 531–542). Springer. https://doi.org/10.1007/978-981-19-0898-9_42

Michel, C. M., & Murray, M. M. (2012). Towards the utilization of eeg as a brain imaging tool. Neuroimage, 61 (2),

–385. https://doi.org/10.1016/j.neuroimage.2011.12.039

Mourtazaev, M., Kemp, B., Zwinderman, A., & Kamphuisen, H. (1995). Age and gender affect different characteristics

of slow waves in the sleep eeg. Sleep, 18 (7), 557–564. https://doi.org/10.1093/sleep/18.7.557

Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: Basic principles, clinical applications, and related

fields. Lippincott Williams & Wilkins.

Ohayon, M. M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep medicine

reviews, 6 (2), 97–111.

Rodriguez, J. D., Perez, A., & Lozano, J. A. (2009). Sensitivity analysis of k-fold cross validation in prediction

error estimation. IEEE transactions on pattern analysis and machine intelligence, 32 (3), 569–575. https:

//doi.org/10.1109/TPAMI.2009.187

Roots, K., Muhammad, Y., & Muhammad, N. (2020). Fusion convolutional neural network for cross-subject eeg motor

imagery classification. Computers, 9 (3), 72. https://doi.org/10.3390/computers9030072

Sanei, S., & Chambers, J. A. (2013). Eeg signal processing. John Wiley & Sons.

Sarangi, S., Sahidullah, M., & Saha, G. (2020). Optimization of data-driven filterbank for automatic speaker verification.

Digital Signal Processing, 104, 102795. https://doi.org/10.1016/j.dsp.2020.102795

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big

data, 6 (1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437 (7063), 1272–1278.

Xia, M., Zhao, X., Deng, R., Lu, Z., & Cao, J. (2023). Eegnet classification of sleep eeg for individual specialization

based on data augmentation. Cognitive Neurodynamics, (In press).

Zhao, X., Zhao, Q., Tanaka, T., Solé-Casals, J., Zhou, G., Mitsuhashi, T., Sugano, H., Yoshida, N., & Cao, J. (2023).

Classification of the epileptic seizure onset zone based on partial annotation. Cognitive Neurodynamics, 17 (3),

–713. https://doi.org/10.1007/s11571-022-09857-4

Downloads

Published

2024-01-28

How to Cite

Chen, R. ., Sui, L. ., Xia, M. ., Liu, J. ., Zhang, T., & Cao, J. . (2024). Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 24, 1–13. https://doi.org/10.24297/ijct.v24i.9567

Issue

Section

Research Articles

Most read articles by the same author(s)