Construct and Evaluate a Phone Dialing System Leveraging SSVEP Brain-Computer Interface
DOI:
https://doi.org/10.24297/ijct.v23i.9539Keywords:
BCI, EEG, SSVEPAbstract
This study presents a SSVEP based BCI system, designed for dialing a phone number through EEG signals. Our SSVEP system leverages a tablet-based stimulator and OpenBCI Cyton board, employing Canonical Correlation Analysis for EEG signal classification. Tested on 7 participants, the system demonstrated a high accuracy rate of 98.1% in identifying the observed keys. The use of a tablet-based SSVEP stimulator was found to reduce visual fatigue compared to traditional LED stimulators. Despite its initial success, further validation with a larger cohort and in varied real-world conditions is required. This work signifies a promising advancement in utilizing BCIs in practical applications.
Downloads
References
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791.
Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., ... & Birbaumer, N. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775-1777.
Rao, R. P. (2013). Brain-computer interfacing: an introduction. Cambridge University Press.
Middendorf, M., McMillan, G., Calhoun, G., & Jones, K. S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8(2), 211-214.
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of vision, 15(6), 4-4.
Vialatte, F. B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Progress in neurobiology, 90(4), 418-438.
Pastor, M. A., Artieda, J., Arbizu, J., Valencia, M., & Masdeu, J. C. (2003). Human cerebral activation during steady-state visual-evoked responses. Journal of Neuroscience, 23(37), 11621-11627.
Keil, J., Müller, N., Ihssen, N., & Weisz, N. (2014). On the variability of the McGurk effect: audiovisual integration depends on prestimulus brain states. Cerebral Cortex, 24(2), 475-481.
Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4), 321-377.
Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural computation, 16(12), 2639-2664.
Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of neural engineering, 6(4), 046002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jinsha Liu, Boning Li, Jianting Cao
This work is licensed under a Creative Commons Attribution 4.0 International License.