Construct and Evaluate a Phone Dialing System Leveraging SSVEP Brain-Computer Interface

Authors

  • Jinsha Liu Graduate School of Engineering, Saitama Institute of Technology, Fukaya City, Saitama, Japan
  • Boning Li Graduate School of Engineering, Saitama Institute of Technology, Fukaya City, Saitama, Japan
  • Jianting Cao Graduate School of Engineering, Saitama Institute of Technology, Fukaya City, Saitama, Japan

DOI:

https://doi.org/10.24297/ijct.v23i.9539

Keywords:

BCI, EEG, SSVEP

Abstract

This study presents a SSVEP based BCI system, designed for dialing a phone number through EEG signals. Our SSVEP system leverages a tablet-based stimulator and OpenBCI Cyton board, employing Canonical Correlation Analysis for EEG signal classification. Tested on 7 participants, the system demonstrated a high accuracy rate of 98.1% in identifying the observed keys. The use of a tablet-based SSVEP stimulator was found to reduce visual fatigue compared to traditional LED stimulators. Despite its initial success, further validation with a larger cohort and in varied real-world conditions is required. This work signifies a promising advancement in utilizing BCIs in practical applications.

Downloads

Download data is not yet available.

References

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791.

Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., ... & Birbaumer, N. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775-1777.

Rao, R. P. (2013). Brain-computer interfacing: an introduction. Cambridge University Press.

Middendorf, M., McMillan, G., Calhoun, G., & Jones, K. S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8(2), 211-214.

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of vision, 15(6), 4-4.

Vialatte, F. B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Progress in neurobiology, 90(4), 418-438.

Pastor, M. A., Artieda, J., Arbizu, J., Valencia, M., & Masdeu, J. C. (2003). Human cerebral activation during steady-state visual-evoked responses. Journal of Neuroscience, 23(37), 11621-11627.

Keil, J., Müller, N., Ihssen, N., & Weisz, N. (2014). On the variability of the McGurk effect: audiovisual integration depends on prestimulus brain states. Cerebral Cortex, 24(2), 475-481.

Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4), 321-377.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural computation, 16(12), 2639-2664.

Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of neural engineering, 6(4), 046002.

Downloads

Published

2023-11-23

How to Cite

Liu, J., Li, B., & Cao, J. (2023). Construct and Evaluate a Phone Dialing System Leveraging SSVEP Brain-Computer Interface. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 23, 128–135. https://doi.org/10.24297/ijct.v23i.9539

Issue

Section

Research Articles