Energy Band Structures of Group IV Elements Including Fullerene, Graphite, and Diamond Using the Quantum Quantitative Model

Authors

  • Dr. Tarek El Ashram Professor of Materials Physics College of Science Jazan University, KSA Port Said University, Egypt http://orcid.org/0000-0002-5613-3035

DOI:

https://doi.org/10.24297/jap.v23i.9712

Keywords:

Quantum Quantitative Model, Crystalline Accommodation Law, Work function, Tarek's law

Abstract

The crystalline accommodation law quantum quantitative model (CALQQM) gives the exact relation between the crystal structure and the electronic energy band structure. In addition, it could explain successfully the superconductivity at room temperature, energy levels, and work functions of materials. This model opens the way to reconsider the energy band structures of all crystalline materials according to it. Therefore, we aim to use CALQQM to determine the electronic band structures of group IV elements including their allotropes such as fullerene, graphite, diamond, and α-Sn. Here, we show a great success in determining the band structures of these elements. CALQQM predicted with high accuracy their electronic properties such as work functions, energy gaps, and spectra in a good agreement with experimental results. A perfect agreement between the calculated value (4.69 eV) and experimental value (4.69 eV) of the work function of fullerene 60 was obtained. 

Downloads

References

J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 2, (1958).

J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 124, 219906,(2006).

Perdew, J. P., Ruzsinszky A., Csouka G. I., Vydrov O.A., Scuseria G. E., Constatin L. A., Zhou X., Brake K., Phys. Rev. Lett. 3, 136406, (2008).

Sung - Ho Na, Chul-Hong Park, J. of the Korean Physical Society, 56, 1, (2010).

Camargo-Matinez, J. A., Baquero R., Phys.Rev. B, 86, 195106, (2012).

Shen S., Shen W., Liu S. et al, Mater. Today Commun., 23, 100847, (2020).

T. El Ashram, Alfarama J. Basic Appl. Sci. 5, I, (2024).

T. El Ashram, J. Adv. Phys., 13, 8, (2017).

A. Gaber, Z. Mohammed, E. Elesh, and T. El Ashram, Alfarama J. Basic Appl. Sci., 5, I, (2024).

T. El Ashram E. Elesh, Z. Mohammed and A. Gaber, Alfarama J. Basic Appl. Sci.,5, IV, (2024).

International Center for Diffraction Data, “PCPDFWIN,” vol. PCPDFWIN v 2.3, 19081-2389, (2002).

Ekimov EA, Sidorov VA, Bauer ED, et al. Nature, 428, 6982, (2004).

K. S. Krishnan, S. C. Jain, Nature,169, 43.04, 1952.

Mechtly, Eugene A, Wendy M. Middleton, Woburn, MA; Butterworth Heinemann, 2002.

M. E. Lin et al., Phys. Rev. B, 47, 7546, (1993).

Hong Liang, Shunfu Xu, Wei Liu, Yueqiang Sun, Xiangfa ,liu, Xiainging Zheng, Senli, Qiang Zhang, Ziliang Zhu, Xiao Chun, Chengguo Dong, Chun Li, Guang Yuan, Hitenor Mimura, Phys. Lett. A, 377,38, (2013).

Hőlzl, J.and Schulte, F. K., Springer Verlage, Berlin, (1979).

Riviere, J. C., Surface Science Physics, I, (1969).

Michaelson, H. B., J. Appl.Phys, 48, 4729, (1977).

IoffePhysico -Technical Institute, http://www.ioffe.rssi.ru.

T. Rabenau, A. Simon, R. K. Kremer, E. Sohmen, Zeitschrift fur Physik B Condensed Matter, 90, (1993).

Levinstein M, Rumyantsev S, and Shur M., Handbook Series on Semiconductor Parameters, London: World Scientific,(1999).

Weast R C and Astle M J, Handbook of Chemistry and Physics (Palm Beach FL: CRC Press), 59, (1974).

V. R. D´Costa, C. S. Cook, A. G. Birdwell, C. L. Littler. M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 73, 125207, (2006).

Downloads

Published

2025-03-22

How to Cite

El Ashram, D. T. (2025). Energy Band Structures of Group IV Elements Including Fullerene, Graphite, and Diamond Using the Quantum Quantitative Model. JOURNAL OF ADVANCES IN PHYSICS, 23, 28–33. https://doi.org/10.24297/jap.v23i.9712

Issue

Section

Articles