Celestial Mechanics: The Non-Stability of The Newtonian Model

Authors

  • Gabriel Barceló

DOI:

https://doi.org/10.24297/jap.v22i.9664

Keywords:

Theory of Dynamic Interactions, Orbital instabilities, Dynamic Interactions, Rotational Dynamics, instability, Solar System

Abstract

Multiple researchers and the three-body problem highlight a potential instability in the Classic model of the Solar System, indicating a possible fundamental instability in the system's dynamics.

Therefore, we consider that the Classical model does not reflect reality, and we propose an alternative model that we call: Theory of Dynamic Interactions, providing a brief exposition of the studies carried out by Advanced Dynamics, until defining a Rotational Dynamics of Interactions, applicable to bodies subjected to multiple pairs of successive non-coaxial forces.

Downloads

Download data is not yet available.

References

Barceló, Gabriel: New Paradigm in Physics: Assumptions and Applications of the Theory of Dynamic Interactions, Volume II: Theory of Dynamic Interactions, Amazon, 2018. (Spanish and English), http://advanceddynamics.net/

Arnold, Vladimir I.: Instability of Dynamical Systems with Several Degrees of Freedom, Complete Works, Vol. 1. Springer, Berlin, https://doi.org/10.1007/978-3-642-01742-1_26. (2009).

Cepelewicz, Jordana: A New Test Finds the "Maximum Instability" in a Solar System Model. Nonlinear Dynamics. Quanta Magazine, May 16, 2023. https://www.quantamagazine.org/new-math-shows-when-solar-systems-become-unstable-20230516/

Merrill Sherman/Quanta Journal. Cepelewicz, Jordana: A New Test Finds the "Maximum Instability" in a Solar System Model. Nonlinear Dynamics, 2023. https://www.quantamagazine.org/new-math-shows-when-solar-systems-become-unstable-20230516/

Laskar, J. & Gastineau, M.: Existence of Collision Trajectories of Mercury, Mars, and Venus with Earth. Nature, Volume 459, pages 817–819 (2009).

Musielak, Z. E., & Quarles, B.: The Three-Body Problem. Prog. Phys. 77, Volume 77, Number 6, June 9, 2014 • © 2014 IOP Publishing Ltd. DOI: 10.1088/0034-4885/77/6/065901

Capiński, J., Maciej, Gidea, Marian, & de la Llave, Rafael: Arnold Diffusion in the Planar Elliptic Restricted Three-Body Problem: Mechanism and Numerical Verification, © 2016 IOP Publishing Ltd. and the London Mathematical Society. Nonlinearity, Volume 30, Number 1. 30, 329, DOI: 10.1088/1361-6544/30/1/329

Féjoz, J., & Guardia, M.: Secular Instability in the Three-Body Problem. Arch. Rational Mech. Anal., 221, 335–362 (2016). https://doi.org/10.1007/s00205-015-0962-y

Sosnitskii, Stepan P.: On the Stability of Lagrange Motion in the Restricted Spatial Elliptic Three-Body Problem, November • © 2020. American Astronomical Society. The Astronomical Journal, Volume 160, Number 6, refer: 2020 AJ 160 281. DOI: 10.3847/1538-3881/abc333

Clarke, Andrew; Féjoz, Jacques; and Guárdia, Marcel: A Counterexample to the Laplace-Lagrange Theorem on the Stability of Semi-Major Axes. 2023, https://doi.org/10.48550/arXiv.2303.05979

Féjoz, J., Guárdia, M.: Secular Instability in the Three-Body Problem. Arch Rational Mech Anal 221, 335–362 (2016). https://doi.org/10.1007/s00205-015-0962-y

Barceló, Gabriel: New Paradigm in Physics: Assumptions and Applications of the Theory of Dynamic Interactions, Volume II: Theory of Dynamic Interactions, Amazon, 2018. (Spanish and English), http://advanceddynamics.net/

Barceló, Gabriel: Analysis of Dynamics Fields in Non-Inertial Systems. World Journal of Mechanics, Vol. 3, No. 3, June 10, 2012, DOI: 10.4236/wjm.2012.23021

Appell, P.: Traité de Mécanique Rationnelle, Gauthier-Villars, Paris, 1909.

Newton, I.: Principia, Im. Du Chasteller, Paris, Proposition 2, 1757.

Barceló, Gabriel: El Vuelo del Bumerán, Marcombo, Barcelona, 2006, p. 98.

Barceló, Gabriel: Analysis of Dynamics Fields in Non-Inertial Systems. World Journal of Mechanics, Vol. 3, No. 3, June 10, 2012, DOI: 10.4236/wjm.2012.23021.

Rodriguez Palenzuela, Arturo: Teoría de Campos Rotacionales, Amazon (February 2022), 207 pages, https://amzn.to/38vLkG9Boletin-37-GEDH-red.pdf (rseq.org)

Rotational Dynamics: Theory of Dynamic Interactions. https://www.scirp.org/journal/home?issueid=9235#75027

https://advanceddynamics.net/medios-audiovisuales/

https://filesedc.com/uploads/333/img/2020/06/1200/el-sistema-solar-esta-compuesto-oficialmente-por-8-planetas-5ef1d3e118b51.jpg

Barceló, Gabriel: Un Mundo en Rotación. Marcombo, Barcelona, 2008.

http://advanceddynamics.net/en/un-mundo-en-rotacion/

Barceló, Gabriel: On the Principle of Equivalence, 61st International Astronautical Congress, American Institute of Aeronautics and Astronautics, Prague, September 27-October 1, 2010.

Downloads

Published

2024-09-24

How to Cite

Barceló, G. (2024). Celestial Mechanics: The Non-Stability of The Newtonian Model. JOURNAL OF ADVANCES IN PHYSICS, 22, 242–248. https://doi.org/10.24297/jap.v22i.9664

Issue

Section

Articles