The effects of buckling on the electronic, thermal, and optical features of a GaP nanosheet

Authors

  • W. A. Abdul- Hussein Department of Science, College of Basic Education, University of Sumer, 64005, Rifaee, IRAQ

DOI:

https://doi.org/10.24297/jap.v21i.9525

Keywords:

Gallium phosphide, First-principles, Buckling effect, Electronic properties, Optical properties

Abstract

In this paper, an investigation into the electronic, thermal, and optical properties of a nanosheet made of Gallium Phosphide (GaP) via density functional theory (DFT). Our analysis focuses on the impact of buckling processes on these features. The utilization of buckling has been demonstrated to adjust the electronic thermal, and optical characteristics of a GaP nanosheet, including the energy gap, total energy, dielectric function, refractive index, and absorption coefficient. Consequently, the application of buckling in the GaP nanosheet allows for the modulation of its indirect band gap. The feasibility of synthesizing GaP nanosheets experimentally has been proven as these nanosheets exhibit both dynamic and thermal stability. Furthermore, buckling resulted in a broadening and a conspicuous shift towards lower energy in the optical phenomena as the degree of buckling increased. Therefore, it can be concluded that buckling serves as an additional parameter for enhancing the performance of GaP nanosheets in optoelectronic applications.

Downloads

Download data is not yet available.

References

W. Abdul-Hussein, F.H. Hanoon, L.F. Al-Badry, Micro and Nanostructures, 176 (2023) 207524. DOI: 10.1016/j.micrna.2023.207524

A. kassaye Sibhatu, T. Teshome, O. Akin-Ojo, A. Yimam, G.A. Asres, RSC advances, 12 (2022) 30838-30845. DOI: 10.1039/D2RA05310A

A. Tariq, S. Nazir, A.W. Arshad, F. Nawaz, K. Ayub, J. Iqbal, RSC advances, 9 (2019) 24325-24332. DOI: 10.1039/C9RA02778E

L. Tang, X. Meng, D. Deng, X. Bao, Advanced Materials, 31 (2019) 1901996. DOI: 10.1002/adma.201901996

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S.Y. Choi, Y. Chai, S.F. Yu, S.P. Lau, J. Hao, Advanced Materials, 28 (2016) 7472-7477. DOI: 10.1002/adma.201601833

S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angewandte Chemie International Edition, 54 (2015) 3112-3115. DOI: 10.1002/anie.201411246

A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Reviews of modern physics, 81 (2009) 109. DOI: 10.1103/RevModPhys.81.109

K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, science, 306 (2004) 666-669. DOI: 10.1126/science.1102896

W. Zhou, S. Zhang, S. Guo, Y. Wang, J. Lu, X. Ming, Z. Li, H. Qu, H. Zeng, Physical Review Applied, 13 (2020) 044066. DOI: 10.1103/PhysRevApplied.13.044066

T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang, Advanced Science, 7 (2020) 2000058. DOI: 10.1002/advs.202000058

Y. Hu, C. Mao, Z. Yan, T. Shu, H. Ni, L. Xue, Y. Wu, RSC advances, 8 (2018) 29862-29870. DOI: 10.1039/C8RA05086D

C. Xia, J. Du, W. Xiong, Y. Jia, Z. Wei, J. Li, Journal of Materials Chemistry A, 5 (2017) 13400-13410. DOI: 10.1039/C7TA02109G

W. Yu, C.-Y. Niu, Z. Zhu, X. Wang, W.-B. Zhang, Journal of Materials Chemistry C, 4 (2016) 6581-6587. DOI: 10.1039/C6TC01505K

Y. Hu, S. Zhang, S. Sun, M. Xie, B. Cai, H. Zeng, Applied Physics Letters, 107 (2015). DOI: 10.1063/1.4931459

S.-M. Choi, S.-H. Jhi, Y.-W. Son, Physical Review B, 81 (2010) 081407. DOI: 10.1103/PhysRevB.81.081407

W. Sheng, J.-P. Leburton, Enhanced Intraband Transitions with Strong Electric Field Asymmetry in Stacked InAs/GaAs Self-Assembled Quantum Dots, in: Physical Models for Quantum Dots, Jenny Stanford Publishing, 2021, pp. 709-719.

A. Bafekry, C. Stampfl, M. Naseri, M.M. Fadlallah, M. Faraji, M. Ghergherehchi, D. Gogova, S. Feghhi, Journal of Applied Physics, 129 (2021). DOI: 10.1063/5.0044976

C. Bardak, A. Atac, F. Bardak, Journal of Molecular Liquids, 273 (2019) 314-325. DOI: 10.1016/j.molliq.2018.10.043

Y. Oh, J. Lee, J. Park, H. Kwon, I. Jeon, S.W. Kim, G. Kim, S. Park, S.W. Hwang, 2D Materials, 5 (2018) 035005. DOI: 10.1088/2053-1583/aab855

M. Karimi, M. Hosseini, Superlattices and Microstructures, 111 (2017) 96-102. DOI: 10.1016/j.spmi.2017.06.019

V. Kumar, E.V. Shah, D.R. Roy, in: AIP Conference Proceedings, AIP Publishing, 2016. DOI: 10.1063/1.4948098

Y.-Q. Zhao, Q.-R. Ma, B. Liu, Z.-L. Yu, J. Yang, M.-Q. Cai, Nanoscale, 10 (2018) 8677-8688. DOI: 10.1039/C8NR00997J

K. Stokbro, J. Taylor, M. Brandbyge, P. Ordejon, Annals of the New York Academy of Sciences, 1006 (2003) 212-226. DOI: 10.1196/annals.1292.014

J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, Journal of Physics: Condensed Matter, 14 (2002) 2745. DOI: 10.1088/0953-8984/14/11/302

J.P. Perdew, K. Burke, M. Ernzerhof, Physical review letters, 77 (1996) 3865. DOI: 10.1103/PhysRevLett.77.3865

W. Abdul-Hussein, F.H. Hanoon, L.F. Al-Badry, Results in Optics, 11 (2023) 100423. DOI: 10.1016/j.rio.2023.100423

H. Zhong, R. Quhe, Y. Wang, Z. Ni, M. Ye, Z. Song, Y. Pan, J. Yang, L. Yang, M. Lei, Scientific reports, 6 (2016) 21786. DOI: 10.1038/srep21786

H.J. Monkhorst, J.D. Pack, Physical review B, 13 (1976) 5188. DOI: 10.1103/PhysRevB.13.5188

Q.-J. Liu, Z.-T. Liu, L.-P. Feng, H. Tian, Solid state sciences, 12 (2010) 1748-1755. DOI: 10.1016/j.solidstatesciences.2010.07.025

B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, B. Lundqvist, Physical Review B, 59 (1999) 12777. DOI: 10.1103/PhysRevB.59.12777

M. Fadaie, N. Shahtahmassebi, M. Roknabad, Optical and Quantum Electronics, 48 (2016) 1-12. DOI: 10.1007/s11082-016-0709-5

G. Grosso, G.P. Parravicini, Solid state physics, Academic press, 2013.

Downloads

Published

2023-09-18

How to Cite

Hussein, W. A. A.-. (2023). The effects of buckling on the electronic, thermal, and optical features of a GaP nanosheet. JOURNAL OF ADVANCES IN PHYSICS, 21, 131–138. https://doi.org/10.24297/jap.v21i.9525

Issue

Section

Articles