Application of Shannon Entropy in the Construction of a Paraconsistent Model of the Atom
DOI:
https://doi.org/10.24297/jap.v18i.8873Keywords:
Paraconsistent logic; quantum information; hydrogen atom, Raman spectroscopy; applied physicsAbstract
In this paper, we present a model of the atom that is based on a nonclassical logic called paraconsistent logic (PL), which has the main property of accepting the contradiction in logical interpretations without the conclusions being annulled. The proposed model is constructed with an extension of PL called paraconsistent annotated logic with annotation of two values (PAL2v), which is associated with an interlaced lattice of four vertices. We use the logarithmic function of the Shannon entropy H(s) to construct the paraconsistent equations and thus adopt a probabilistic model for representations in quantum physics. Through analyses of the interlaced lattice, comparative values are obtained for some of the phenomena and effects of quantum mechanics, such as superposition of states, wave functions, and equations that determine the energy levels of the atomic shells of an atom. At the end of this article, we use the hydrogen atom as a basis for the representation of the PAL2v model, where the values of the energy levels in six orbital shells are obtained. As an example, we present a possible method of applying the PAL2v model to the use of Raman spectroscopy signals in the detection of lubricating mineral oil quality.
Downloads
References
Abe J. M., Nakamatsu K., Da Silva Filho J. I., (2019). Three decades of paraconsistent annotated logics: a review paper on some applications, Procedia Computer Science, Volume 159, Pages 1175-1181, https://doi.org/10.1016/j.procs.2019.09.286.
Abe J.M., Nakamatsu K., Akama S., Filho J.I.S. (2018) The Importance of Paraconsistency and Paracompleteness in Intelligent Systems. In: Czarnowski I., Howlett R., Jain L. (eds) Intelligent Decision Technologies 2017. IDT 2017. Smart Innovation, Systems and Technologies, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-59424-8_18.
Abe, J. M.; Akama, S.; Nakamatsu, K. (2016). Introduction to Annotated Logics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-17912-4
Ali K. Hasan, & Wafaa Al-mudhafar. (2020). Study of Nuclear Structure for 36Si Isotope by Using Shell Model with Several Interactions. JOURNAL OF ADVANCES IN PHYSICS, 18, 58-65. https://doi.org/10.24297/jap.v18i.8842
Belnap N.D. (1977) A Useful Four-Valued Logic. In: Dunn J.M., Epstein G. (eds) Modern Uses of Multiple-Valued Logic. Episteme (A Series in the Foundational, Methodological, Philosophical, Psychological, Sociological, and Political Aspects of the Sciences, Pure and Applied), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1161-7_2
Blair H A., Subrahmanian,V.S. (1989) Paraconsistent logic programming, Theoretical Computer Science, Volume 68, Issue 2, Pages 135-154, https://doi.org/10.1016/0304-3975(89)90126-6.
7 . Campos P., Martins M.G.R., Fernandes M.C.B., Vianna J.D.M. (2018) Quantum mechanics on phase space: The hydrogen atom and its Wigner functions, Annals of Physics, Volume 390, Pages 60-70, https://doi.org/10.1016/j.aop.2018.01.002.
Coelho, M. S.; Da Silva Filho, J. I.; Côrtes, H. M. et al. (2019). Hybrid PI controller constructed with paraconsistent annotated logic. Control Engineering Practice. 84:112-124, DOI: 10.1016/j.conengprac.2018.11.007
Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, University of Edinburgh Physics Today 11, 6, 32 (1958); https://doi.org/10.1063/1.3062610.
Da Costa, N. C.; de Ronde, A. C. (2013). Found Phys. 43: 845, DOI: 10.1007/s10701-013-9721-9.
Da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. NotreDame Journal Form Log,15(4):497–510. doi:10.1305/ndjfl/1093891487
Da Silva Filho, J. I. (1999). Interpretation methods of Paraconsistent Annotated logic with annotation of two values - LPA2v with construction of algorithm and implementation of Electronic Circuits. Doctoral. Thesis (in portuguese), Polytechnic School of the University of São Paulo, POLI / USP São Paulo, Brazil.
Da Silva Filho J. I.; Lambert-Torres, G.; Abe J. M. (2010). Uncertainty Treatment Using Paraconsistent Logic -Introducing Paraconsistent Artificial Neural Networks. IOS Press. 328:211. Frontiers in Artificial Intelligence and Applications, Amsterdam, Netherlands. DOI 10.3233/978-1-60750-558-7-i
Da Silva Filho, J. I.; Nunes, V. C.; Garcia, D. V.; Mario, M.C.; Giordano, F.; Abe, J. M.; Pacheco, M. T. T.; Silveira Jr., L. (2016). Paraconsistent analysis network applied in the treatment of Raman spectroscopy data to support medical diagnosis of skin cancer. Med. Biol. Eng. Comput. 54:1-15, DOI:10.1007/s11517-016-1471-3
Da Silva Filho, J. I. (2017). A Probabilistic Paraconsistent Logical Model for Non-Relativistic Quantum Mechanics Using Interlaced Bilattices with Conflation and Bernoulli Distribution. Journal of Quantum Information Science. 7:89-124, DOI: 10.4236/jqis.2017.73009
Da Silva Filho, J. I. (2016), Undulatory Theory with Paraconsistent Logic (Part I): Quantum Logical Model with Two Wave Functions. Journal of Quantum Information Science. 6:143-180. DOI: 10.4236/jqis.2016.63012
Da Silva Filho, J. I. (2016). Undulatory Theory with Paraconsistent Logic (Part II): Schrödinger Equation and Probability Representation. Journal of Quantum Information Science. 6:181-213, DOI: 10.4236/jqis.2016.63013
Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path-Integral. McGraw-Hill, New York.
Garbaczewski, P. (2008). Information dynamics: temporal behavior of uncertainty measures, Open Physics, 6(1), 158-170, doi: https://doi.org/10.2478/s11534-008-0020-6
Garcia, D. V.; Da Silva Filho, J. I.; Silveira Jr, L. et al., (2019). Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions. Vibrational Spectroscopy. 103. DOI: 10.1016/j.vibspec.2019.102929
Ginsberg, M. L. (1988). Multivalued logics: A uniform approach to inference in artificial intelligence, Computational Intelligence. 4:265-316. https://doi.org/10.1111/j.1467-8640.1988.tb00280.x
Gribbin, J. (2012). Erwin Schrodinger and the Quantum Revolution. Ed. Random House. ISBN1446465713, 9781446465714
Mandolesi A. L.G., (2020) Quantum fractionalism: The Born rule as a consequence of the complex Pythagorean theorem, Physics Letters A, Volume 384, Issue 28,126725, https://doi.org/10.1016/j.physleta.2020.126725.
Marinescu D. C., Marinescu, G. M. (2012). Chapter 2 - Measurements and Quantum Information, Editor(s): Dan C. Marinescu, Gabriela M. Marinescu, Classical and Quantum Information, Academic Press, Pages 133-220, https://doi.org/10.1016/B978-0-12-383874-2.00002-3
Kamide N., (2015) Inconsistency-tolerant temporal reasoning with hierarchical information, Information Sciences, Volume 320, 2015, Pages 140-155, https://doi.org/10.1016/j.ins.2015.05.015.
Krane K. S., (2020) Discovery of the Quantum Structure of Atoms and Their Nuclei, Reference Module in Earth Systems and Environmental Sciences, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.12169-4.
Somsikov, V. M. (2019). Deterministic Irreversibility and The Matter Structure. JOURNAL OF ADVANCES IN PHYSICS, 16(1), 21-33. https://doi.org/10.24297/jap.v16i1.8109
Kragh, H.; Rigden, J. S. (2013). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925. American Journal of Physics. 81(3):237-238 DOI: 10.1119/1.4771884
Misseno Da Cruz et al. (2015). Application of Paraconsistent Artificial Neural Network in Statistical Process Control acting on voltage level monitoring in Electrical Power Systems. 18th International Conference on Intelligent System Application to Power Systems, ISAP 201510 November 2015, Porto; Portugal; 11 September 2015 through 17 September 2015; Category number CFP15755-USB; Code 118601. DOI:10.1109/ISAP.2015.7325579
Nielsen, M. A., Chuang, I. L. (2010). Quantum Computation and Quantum Information. Massachusetts Institute of Technology, 702 pages ISBN: 9781107002173 .
https://doi.org/10.1017/CBO9780511976667
Pérez-Obiol A., Cheon,T. (2020) One dimensional hydrogen problem with general connection condition at the origin and non-Rydberg spectra, Physica E: Low-dimensional Systems and Nanostructures, Volume 119, 114013, https://doi.org/10.1016/j.physe.2020.114013.
Subrahmanian, V. S. (1987). On the semantics of quantitative logic programs. Proc. 4th. IEEE Symposium on Logic Programming, Computer Society Press, Washington D.C.
Shannon, C. E. (1948) Bell Syst. Tech. J. 27 379{423 and 623{656, DOI:10.1002/j.1538-7305.1948.tb01338.x.
Shannon, C. E.; Weaver W. (1949). The Mathematical Theory of Communication, Illini Books, Illinois.
van Strien M., (2020) Bohm's theory of quantum mechanics and the notion of classicality, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Volume 71, Pages 72-86, https://doi.org/10.1016/j.shpsb.2020.04.005.
von Neumann, J. (1932). Applications of the ergodic hypothesis. Proceedings of the National Academy of Sciences. 1932;18;263-266. Reprinted in (Taub 1961a) 13. https://doi.org/10.1073/pnas.18.3.263
Wan-Ping, Z., Peng, Z., & Hao-Xue, Q. (2015). Detecting extra dimensions by Hydrogen-like atoms, Open Physics,13(1), doi: https://doi.org/10.1515/phys-2015-0011
Ying M, (2010) Quantum computation, quantum theory and AI, Artificial Intelligence, Volume 174, Issue 2, Pages 162-176. https://doi.org/10.1016/j.artint.2009.11.009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 João Inácio da Silva Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.