Extraction of temperature-dependent exciton-polariton damping in InP bulk crystal
DOI:
https://doi.org/10.24297/jap.v18i.8805Keywords:
Indium phosphide, integrated absorption, exciton-polaritonsAbstract
The temperature dependence of exciton-polariton damping in InP bulk crystal was extracted by the method of integrated absorption. The extraction procedure excluding the contribution of inhomogeneous broadening into the exciton ground state absorption linewidth is graphically illustrated. The extracted temperature-dependent damping is analyzed regarding the primary dissipative mechanism in order to determine the material parameters of exciton-polariton scattering by acoustic and optical phonons.
Downloads
References
Adachi, S. (1992). Physical properties of III-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. Wiley. https://doi.org/10.1002/352760281X
Akhmediev, N. N. (1980). Role of spatial dispersion in light absorption by excitons. Sov. Phys. JETP, 52(4), 773-778.
Gao, J. (2015). Heterojunction bipolar transistors for circuit design: Microwave modeling and parameter extraction. Higher Education Press / Wiley. https://doi.org/10.1002/9781118921531
Gorban’, I. S., Krokhmal’, A. P., and Yanchuk, Z. Z. (2000). Excitons in monoclinic zinc diphosphide: Orthoexciton and polariton effects at n=1 resonance. Physics of the Solid State, 42(9), 1625–1633. https://doi.org/10.1134/1.1309441
Kasap, S., and Capper, P. (eds). (2017). Springer handbook of electronic and photonic materials (2nd edition). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-48933-9
Kosobukin, V. A., Seisyan, R. P., and Vaganov, S. A. (1993). Exciton-polariton light absorption in bulk GaAs and semiconductor superlattices. Semiconductor Science and Technology, 8(7), 1235–1238. https://doi.org/10.1088/0268-1242/8/7/009
Markosov, M. S., and Seisyan, R. P. (2009). Width of the excitonic absorption line in AlxGa1−xAs alloys. Semiconductors, 43(5), 629–634. https://doi.org/10.1134/S1063782609050170
Pekar, S. I. (1958). The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. JETP, 6, 785–796.
Sanvitto, D., and Kéna-Cohen, S. (2016). The road towards polaritonic devices. Nature Materials, 15(10), 1061–1073. https://doi.org/10.1038/nmat4668
Seisyan, R. P., Kosobukin, V. A., Vaganov, S. A., Markosov, M. A., Shamirzaev, T. S., Zhuravlev, K. S., Bakarov, A. K., and Toropov, A. I. (2005). Excitonic polaritons in semiconductor solid solutions AlxGa1–xAs. Physica Status Solidi (c), 2(2), 900–905. https://doi.org/10.1002/pssc.200460338
Seisyan, R. P., and Vaganov, S. A. (2020). Temperature-Dependent Total Absorption of Exciton Polaritons in Bulk Semiconductors. Semiconductors, 54(4), 399–402. https://doi.org/10.1134/S1063782620040156
Vaganov, S. A., and Seisyan, R. P. (2011). Temperature-dependent excitonic absorption in long-period multiple InxGa1−xAs/GaAs quantum well structures. Semiconductors, 45(1), 103–109. https://doi.org/10.1134/S1063782611010222
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 S. A. Vaganov
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.