Mathematical Modeling of Photovoltaic Properties of Nipc/P-Si (Organic/Inorganic) Heterojunction by Using Artificial Neural Networks Model


  • R. A. Mohamed Ain Shams university
  • Mahmoud. Y. El-Bakry Ain Shams University,
  • D. M. Habashy Ain Shams University,
  • E. H. Aamer Ain Shams University,



Modeling, Artificial Neural Network (ANN) Model, Photovoltaic Properties , (Organic/Inorganic) Heterojunction


In this research, the artificial neural network (ANN) and resilient back propagation (R-prop) training algorithm are utilized to model the photovoltaic properties of Nickel–phthalocyanine (NiPc/p-Si) heterojunction. The experimental data are extracted from experimental studies. Experimental data are utilized as inputs in the ANN model. Training of different structures of the ANN is processed to approach the minimum value of error. Eight artificial neural networks are trained to get a better mean square error (MSE) and best execution for the networks. The ANN performances are also investigated and their values are very small (MSE < 10-3). The simulation results of the current-voltage characteristics of NiPc films are produced and provided excellent matching with the corresponding experimental data. Utilization of ANN model for predictions is also processed and gives accurate results.  The equation which describes the relation between the inputs and outputs is obtained. The high accuracy of the ANN model has appeared in the major guessing power and the ability of generalization depending on the obtained equations.


Download data is not yet available.

Author Biographies

R. A. Mohamed, Ain Shams university

Theoretical Group, Physics Department, Faculty of Education, Cairo, Egypt

Mahmoud. Y. El-Bakry , Ain Shams University,

Theoretical Group, Physics Department, Faculty of Education, Cairo, Egypt

D. M. Habashy, Ain Shams University,

Theoretical Group, Physics Department, Faculty of Education, Cairo, Egypt

E. H. Aamer, Ain Shams University,

Theoretical Group, Physics Department, Faculty of Education, Cairo, Egypt


Ao, R., Kümmerl, L., Haarer, D. (1995). Present limits of data storage using dye molecules in solid matrices, Adv. Mater., 7 495-499.

Ali, H. A. M., Mohamed R. A. (2018). Modeling for electrical impedance spectroscopy of (4E)-2-amino-3cyanobenzo[b]oxocin-6-one by artificial neural network, Ceramics International, 44 10907-10911.

Attia, A.A., El-Nahas, M.M., El-Bakry, M.Y., Habashy, D.M. (2013). Neural networks modeling for refractive indices of semiconductors, Opt. Commun. 287 140-144.

Darwish, A.A.A. Hanafy, T.A., Attia, A. A., Habashy, D.M., El-Bakry, M.Y., El-Nahas, M. M., (2015). Optoelectronic performance and artificial neural networks (ANNs) modeling of n-InSe/p-Si solar cell, Superlattices and Microstructures 83 299-309.

El-Bakry, M.Y. (2003). Feed forward neural networks modeling for K–P interactions, Chaos Soliton Fract, 18 995-1000.


El.Barry, A.M.A., Habashy, D.M., (2019). Simulation and prediction of optical characterization of casting (Adamantan Fulgide) thin films using (CTANNs) approach.33(11) 1950093

El-Barry, A.M.A., Mohamed, R. A., (2019). Modeling of photovoltaic characteristics of pyronine thin film/p-Si single crystal, Material Research Express, 6(7) 2053-1591.

El-Metwally, K.A., Haweel, T.I., El-Bakry, M.Y. (2000). A universal neural network representation for hadron hadron interactions at high-energy, Int. J. Mod. Phys. C, 11 619 - 629.

El-Nahass, M.M., Farag, A.A.M., Darwish, A.A.A. (2005). Photovoltaic properties of NiPc/p-Si(organic/inorganic) heterojunctions, Organic Electronics, 6 129-136.

Gardner, J.W., Iskandari, M.Z., Bott, B. (1992). Effect of electrode geometry on gas sensitivity of lead phthalocyanine thin films, Sensors Actuators B 9 (2) 133 - 142.

Ghosh, A.K., Morel, D.L., Feug, T., Shaw,R. F., Rowe, C. (1974). Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells, J. Appl. Phys. 45 230.

Gregory, P. (1991). High-technology Applications of organic colorants, plenum press, New York

Haisch, P., Winter, G., Hanack, M., Lüer, L., Egelhaai, H., Oelkrug, D. (1997). Soluble alkyl‐ and alkoxy‐substituted titaniumoxo phthalocyanines: Synthesis and photoconductivity, advanced materials, 9 (4) 316-321.

Haweel, T.I. El-Bakry, M.Y., El-Metwally, K. A. (2003). Hadron–hadron interactions at high energy via Rademacher functions, Chaos Solitons Fract., 18 (2003) 159 168.

Kerp, H.R., van Faasen, E.E. (2000). Effects of oxygen on exciton transport in zinc phthalocyanine layers, Chem. Phys. Lett. 5 5-12.

Khelifi, M., Mejatty, M., Berrchar, J., Bouchrriha, H. (1985). Photovoltaic effect in thin layers of phthalocyanines, Rev. Phys. Appl. 20 511-521.

Lee, S.T., Wang, Y.M., HOU, X.Y., Tang, C.W. (1999). Interfacial electronic structures in an organic light-emitting diode, Appl. Phys. Lett., 74 (5) 670-672.

Linstead, R.P. (1934). Phthalocyanines. Part I. A new type of synthetic coloring matters, Journal of the Chemical Society, Part І 1016.

Mahapatro, A.K., Ghosh, S. (2001). High rectification in metal-phthalocyanine based single layer devices, IEEE Trans. Electron 48 (9) 1911-1914.

Mohamed, R. A., Habashy, D. M. (2018). Thermal Conductivity Modeling of Propylene Glycol - Based Nanofluid Using Artificial Neural Network, Journal of advances in physics, 14 (1) 5281-5291.

Mohamed, R. A. (2019). Prediction of AC conductivity for organic semiconductors based on artificial neural network ANN model, Material Research Express, 6(8) 085107-14 pages.

Mrwa,, A., Friedrich,, M., Hofmann, A., Zahn, D.R.T. (1995). Response of lead phthalocyanine to high NO2 concentration, Sensors Actuators 25 596 - 599.

Nada, R.H., Habashy, D.M., AbdEl-Salam, F., El-Bakry, M. Y., Abd El-Khalek, A.M., Abd E;-Reheim, E. (2013). Modeling of aging process for supersaturated solution treated of Al–3wt%Mg alloy, Mater. Sci. Eng. A 567 80-83.

Reycroft, P.J., Ullai, H. (1980). Photovoltaic properties of polymer films, Solar Energy Mater. 2 217-228.

Tang, C.W. (1986). Two‐layer organic photovoltaic cell, Appl. Phys. Lett. 48 183-185.

Wohrle, D., Meissner, D. (1991). Organic solar cells, Adv. Mater. 3 129 - 138.




How to Cite

R. A. Mohamed, Mahmoud. Y. El-Bakry, D. M. Habashy, & E. H. Aamer. (2020). Mathematical Modeling of Photovoltaic Properties of Nipc/P-Si (Organic/Inorganic) Heterojunction by Using Artificial Neural Networks Model. JOURNAL OF ADVANCES IN PHYSICS, 17, 306–321.