Relativity: An Alternative Interpretation In the Light of The Existence of An Extra Spatial Dimension – A Systematic Review
DOI:
https://doi.org/10.24297/jap.v17i.8660Keywords:
Relativity, Oscillating Universe, Extra Dimensions, Global Symmetry, Mass-Energy Equivalence, Space Quantization, Relativistic Energy, Lorentz Transformations, Faster than LightAbstract
This paper represents the latest revision of a portion of the research work, still in progress, carried out by the author during the last four years. The overall aim of the study fundamentally consists in showing how, while postulating the absoluteness of time, the validity of the relativistic equations may be formally preserved. Starting from the writing of the first Friedmann – Lemaître Equation (and therefore from General Relativity), a Simple-Harmonically Oscillating Universe (flat, upper-bounded, conventionally singular at
Downloads
References
Adler, R. J., Santiago, D. I. (1999). On Gravity and the Uncertainty Principle. Modern Physics Letters A, 14(20), 1371-1381. https://doi.org/10.1142/S0217732399001462
Bohm, D. (1952a). A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I. Physical Review, 85, 166–179. https://doi.org/10.1103/PhysRev.85.166
Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables", II. Physical Review. 85, 180–193. https://doi.org/10.1103/PhysRev.85.180
Capozziello, S., Lambiase, G., Scarpetta, G. (2000). Generalized Uncertainty Principle from Quantum Geometry. Int. Journal of Theoretical Physics, 39(1), 15-22. https://doi.org/10.1023/A:1003634814685
Cataldo, C. (2016). Faster than Light: again on the Lorentz Transformations. Applied Physics Research, 8(6), 17-24. http://dx.doi.org/10.5539/apr.v8n6p17
Cataldo, C. (2017a). From General Relativity to A Simple-Harmonically Oscillating Universe, and Vice-Versa: a Review. Applied Physics Research, 9(1), 86-92. http://dx.doi.org/10.5539/apr.v9n1p86
Cataldo, C. (2017b). From the Oscillating Universe to Relativistic Energy: a Review. Journal of High Energy Physics, Gravitation, and Cosmology, 3, 68-77. http://dx.doi.org/10.4236/jhepgc.2017.31010
Cataldo, C. (2019a). Relativity: Towards a New Interpretation. Journal of High Energy Physics, Gravitation, and Cosmology, 5, 790-849. https://dx.doi.org/10.4236/jhepgc.2019.53041
Cataldo, C. (2019b). Towards a New Concept of Closed System: from the Oscillating Universe to the EM-Drive. Int. J. of Advanced Engineering Research and Science, 6(2), 43-52. https://dx.doi.org/10.22161/ijaers.6.2.7
Cheng, Ta-Pei (2005). Relativity, Gravitation, and Cosmology: A Basic Introduction. Oxford University Press Inc., New York. ISBN 0 19 852956 2
Di Mauro, P., Notarrigo S. (1995). Critica delle usual derivazioni delle trasformazioni di Lorentz. Comunicazione al LXXXI Congresso Nazionale SIF, 4 Ottobre 1995, Perugia.
Retrieved from http://www.lascuolaitalica.it/pubbl12.htm
Di Mauro, P., Notarrigo S. (1997). Sull’Invarianza delle Equazioni di Maxwell. Atti del XVI Congresso Naz. Di Storia Della Fisica e dell’Astronomia, 355-360. Retrieved from http://www.lascuolaitalica.it/pubbl5.htm
Di Valentino, E., Melchiorri, A., Silk, J. (2019). Planck evidence for a closed Universe and a possible crisis for cosmology. Nature Astronomy. https://doi.org/10.1038/s41550-019-0906-9
Einstein, A. (1916). Relativity: The Special and General Theory (translated by R. W. Lawson, 1920). H. Holt and Co., NY. Retrieved from https://archive.org/details/cu31924011804774
Friedmann A. (1922). Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377-386. English Translation (1999) On the Curvature of Space. General Relativity and Gravitation, 31(12), 1991-2000.
https://doi.org/10.1023/A:1026751225741
Geller, M. J., Peebles, P. J. E. (1972). Test of the expanding universe postulate. The Astrophysical Journal, 174, 1-5. https://doi.org/10.1086/151462
Ghosal, S. K., Nandi, K. K., Chakraborty, P. (1991). Passage from Einsteinian to Galilean Relativity and Clock Synchrony. Zeitschrift für Naturforschung A, 46(3), 256–258. https://doi.org/10.1515/zna-1991-0307
Gielen, S., Turok, N. (2016). Perfect Quantum Cosmological Bounce. Physical Review Letters, 117, 021301.
https://doi.org/10.1103/PhysRevLett.117.021301
Harrison, E. R. (1967). Classification of Uniform Cosmological Models. Monthly Notices of the Royal Astronomical Society, 137, 69-79. https://doi.org/10.1093/mnras/137.1.69
Hubble, E. P. (1929). A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences (of the United States of America), 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168
Hubble, E. P. (1947). The 200-inch telescope and some problems it may solve. Publications of the Astronomical Society of the Pacific, 59, 153-167. https://doi.org/10.1086/125931
Ijjas, A., Steinhardt, P. J. (2016). Classically Stable Nonsingular Cosmological Bounces. Physical Review Letters, 117, 121304. https://doi.org/10.1103/PhysRevLett.117.121304
LaViolette, P. (1986) Is the universe really expanding? The Astrophysical. Journal, 301, 544–553. https://doi.org/10.1086/163922
Lorentz, H. A. (1904). Electromagnetic Phenomena in a System Moving With Any Velocity Smaller than That of Light. Proceed. of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.
Retrieved from http://www.dwc.knaw.nl/DL/publications/PU00014148.pdf
Lorentz, H. A. (1909). The theory of electrons and its applications to the phenomena of light and radiant heat. B.G. Teubner, Leipzig - G. E. Stechert & Co., New York.
Retrieved from https://archive.org/details/electronstheory00lorerich
Maggiore, M. (1994Black Hole Complementarity and the Physical Origin of the Stretched Horizon. Physical Review D, 49, 2918. https://doi.org/10.1103/PhysRevD.49.2918
Mangano, G., Fedele Lizzi, F., Porzio, A. (2015). Inconstant Planck’s Constant. International Journal of Modern Physics A, 30(34). https://doi.org/10.1142/S0217751X15502097
Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Clarendon Press, Oxford. Retrieved from https://archive.org/details/electricandmagne01maxwrich
Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes Nach der Einsteinschen Theorie. Sitzungsber. Der Deutschen Akad. Der Wiss. Zu Berlin, 189-196 (On the Gravitational Field of a Point-Mass, According to Einstein’s Theory. translated by L. Borissova and D. Rabounski, 2008).
Retrieved from: http://zelmanov.ptep-online.com/papers/zj-2008-03.pdf
Seshavatharam, U. V. S., Lakshminarayana, S. (2013). Is Planck’s Constant – A Cosmological Variable? International Journal of Astronomy, 2(1), 11-15. https://doi.org/10.5923/j.astronomy.20130201.02
(also on: http://article.sapub.org/10.5923.j.astronomy.20130201.02.html)
Seshavatharam, U. V. S., Lakshminarayana, S., Sai B.V.S.T. (2013). Inadequacy of Modern Cosmology and Basics of Atomic Cosmology. [viXra.org]. Retrieved from: http://www.rxiv.org/pdf/1303.0214v1.pdf
Shalit-Margolyn, A. (2018). Minimal Quantities and Primary Measurable Variant of Gravity II. Strong Principle of Equivalence and Transition to High Energies. Advanced Studies in Theoretical Physics, 12(2), 79-103. https://doi.org/10.12988/astp.2018.823
Turok, N., Steinhardt, P. (2005). Beyond Inflation: A Cyclic Universe Scenario. Physica Scripta, T 117, 76-85. https://doi.org/10.1238/Physica.Topical.117a00076 (also on arXiv: https://arxiv.org/abs/hep-th/0403020)
Veneziano, G. (1986). A Stringy Nature Needs Just Two Constants. Europhysics Letters, 2, 199.
https://doi.org/10.1209/0295-5075/2/3/006
Voigt, W. (1887). Ueber das Doppler’sche Princip. Göttingen Nachrichten, 2(10), 41-51.
Retrieved from: http://www.digizeitschriften.de/dms/img/?PPN=PPN252457072_1887&DMDID=dmdlog12
Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87 https://doi.org/10.1098/rstl.1805.0005
Zeldovich, Y. (1961). The equation of state at ultrahigh densities and its relativistic limitations. J. of Exp. And Theoretical Physics, 41, 1609–1615. Retrieved from http://www.jetp.ac.ru/cgi-bin/dn/e_014_05_1143.pdf
Zwicky, F. (1929) On the Red Shift of Spectral Lines through Interstellar Space. Proceeding of the National Academy of Science (of the United States of America), 15, 773-779. https://doi.org/10.1073/pnas.15.10.773
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.