Relativity: An Alternative Interpretation In the Light of The Existence of An Extra Spatial Dimension – A Systematic Review


  • Carmine Cataldo Independent Researcher, Battipaglia (Salerno), Italy



Relativity, Oscillating Universe, Extra Dimensions, Global Symmetry, Mass-Energy Equivalence, Space Quantization, Relativistic Energy, Lorentz Transformations, Faster than Light


This paper represents the latest revision of a portion of the research work, still in progress, carried out by the author during the last four years. The overall aim of the study fundamentally consists in showing how, while postulating the absoluteness of time, the validity of the relativistic equations may be formally preserved. Starting from the writing of the first Friedmann – Lemaître Equation (and therefore from General Relativity), a Simple-Harmonically Oscillating Universe (flat, upper-bounded, conventionally singular at


Download data is not yet available.

Author Biography

Carmine Cataldo, Independent Researcher, Battipaglia (Salerno), Italy

Ph.D. in Mechanical Engineering


Adler, R. J., Santiago, D. I. (1999). On Gravity and the Uncertainty Principle. Modern Physics Letters A, 14(20), 1371-1381.

Bohm, D. (1952a). A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I. Physical Review, 85, 166–179.

Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables", II. Physical Review. 85, 180–193.

Capozziello, S., Lambiase, G., Scarpetta, G. (2000). Generalized Uncertainty Principle from Quantum Geometry. Int. Journal of Theoretical Physics, 39(1), 15-22.

Cataldo, C. (2016). Faster than Light: again on the Lorentz Transformations. Applied Physics Research, 8(6), 17-24.

Cataldo, C. (2017a). From General Relativity to A Simple-Harmonically Oscillating Universe, and Vice-Versa: a Review. Applied Physics Research, 9(1), 86-92.

Cataldo, C. (2017b). From the Oscillating Universe to Relativistic Energy: a Review. Journal of High Energy Physics, Gravitation, and Cosmology, 3, 68-77.

Cataldo, C. (2019a). Relativity: Towards a New Interpretation. Journal of High Energy Physics, Gravitation, and Cosmology, 5, 790-849.

Cataldo, C. (2019b). Towards a New Concept of Closed System: from the Oscillating Universe to the EM-Drive. Int. J. of Advanced Engineering Research and Science, 6(2), 43-52.

Cheng, Ta-Pei (2005). Relativity, Gravitation, and Cosmology: A Basic Introduction. Oxford University Press Inc., New York. ISBN 0 19 852956 2

Di Mauro, P., Notarrigo S. (1995). Critica delle usual derivazioni delle trasformazioni di Lorentz. Comunicazione al LXXXI Congresso Nazionale SIF, 4 Ottobre 1995, Perugia.

Retrieved from

Di Mauro, P., Notarrigo S. (1997). Sull’Invarianza delle Equazioni di Maxwell. Atti del XVI Congresso Naz. Di Storia Della Fisica e dell’Astronomia, 355-360. Retrieved from

Di Valentino, E., Melchiorri, A., Silk, J. (2019). Planck evidence for a closed Universe and a possible crisis for cosmology. Nature Astronomy.

Einstein, A. (1916). Relativity: The Special and General Theory (translated by R. W. Lawson, 1920). H. Holt and Co., NY. Retrieved from

Friedmann A. (1922). Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377-386. English Translation (1999) On the Curvature of Space. General Relativity and Gravitation, 31(12), 1991-2000.

Geller, M. J., Peebles, P. J. E. (1972). Test of the expanding universe postulate. The Astrophysical Journal, 174, 1-5.

Ghosal, S. K., Nandi, K. K., Chakraborty, P. (1991). Passage from Einsteinian to Galilean Relativity and Clock Synchrony. Zeitschrift für Naturforschung A, 46(3), 256–258.

Gielen, S., Turok, N. (2016). Perfect Quantum Cosmological Bounce. Physical Review Letters, 117, 021301.

Harrison, E. R. (1967). Classification of Uniform Cosmological Models. Monthly Notices of the Royal Astronomical Society, 137, 69-79.

Hubble, E. P. (1929). A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences (of the United States of America), 15, 168-173.

Hubble, E. P. (1947). The 200-inch telescope and some problems it may solve. Publications of the Astronomical Society of the Pacific, 59, 153-167.

Ijjas, A., Steinhardt, P. J. (2016). Classically Stable Nonsingular Cosmological Bounces. Physical Review Letters, 117, 121304.

LaViolette, P. (1986) Is the universe really expanding? The Astrophysical. Journal, 301, 544–553.

Lorentz, H. A. (1904). Electromagnetic Phenomena in a System Moving With Any Velocity Smaller than That of Light. Proceed. of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.

Retrieved from

Lorentz, H. A. (1909). The theory of electrons and its applications to the phenomena of light and radiant heat. B.G. Teubner, Leipzig - G. E. Stechert & Co., New York.

Retrieved from

Maggiore, M. (1994Black Hole Complementarity and the Physical Origin of the Stretched Horizon. Physical Review D, 49, 2918.

Mangano, G., Fedele Lizzi, F., Porzio, A. (2015). Inconstant Planck’s Constant. International Journal of Modern Physics A, 30(34).

Maxwell, J. C. (1873). A Treatise on Electricity and Magnetism. Clarendon Press, Oxford. Retrieved from

Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes Nach der Einsteinschen Theorie. Sitzungsber. Der Deutschen Akad. Der Wiss. Zu Berlin, 189-196 (On the Gravitational Field of a Point-Mass, According to Einstein’s Theory. translated by L. Borissova and D. Rabounski, 2008).

Retrieved from:

Seshavatharam, U. V. S., Lakshminarayana, S. (2013). Is Planck’s Constant – A Cosmological Variable? International Journal of Astronomy, 2(1), 11-15.

(also on:

Seshavatharam, U. V. S., Lakshminarayana, S., Sai B.V.S.T. (2013). Inadequacy of Modern Cosmology and Basics of Atomic Cosmology. []. Retrieved from:

Shalit-Margolyn, A. (2018). Minimal Quantities and Primary Measurable Variant of Gravity II. Strong Principle of Equivalence and Transition to High Energies. Advanced Studies in Theoretical Physics, 12(2), 79-103.

Turok, N., Steinhardt, P. (2005). Beyond Inflation: A Cyclic Universe Scenario. Physica Scripta, T 117, 76-85. (also on arXiv:

Veneziano, G. (1986). A Stringy Nature Needs Just Two Constants. Europhysics Letters, 2, 199.

Voigt, W. (1887). Ueber das Doppler’sche Princip. Göttingen Nachrichten, 2(10), 41-51.

Retrieved from:

Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87

Zeldovich, Y. (1961). The equation of state at ultrahigh densities and its relativistic limitations. J. of Exp. And Theoretical Physics, 41, 1609–1615. Retrieved from

Zwicky, F. (1929) On the Red Shift of Spectral Lines through Interstellar Space. Proceeding of the National Academy of Science (of the United States of America), 15, 773-779.




How to Cite

Cataldo, C. (2020). Relativity: An Alternative Interpretation In the Light of The Existence of An Extra Spatial Dimension – A Systematic Review. JOURNAL OF ADVANCES IN PHYSICS, 17, 133–154.