Mechanical Bending Effects on Hydrogen Storage of Ni Decorated (8, 0) Boron Nitride Nanotube: DFT Study

  • atef elmahdy Department of Physics, Faculty of Education, Ain Shams University
  • hayam taha, dr Department of Physics, Faculty of Education, Ain Shams University
  • mohamed kamel, prof Department of Physics, Faculty of Education, Ain Shams University
  • menna Tarek, miss Department of Physics, Faculty of Education, Ain Shams University
Keywords: Hydrogen Storage, DFT, NBO, DOS, MEPs

Abstract

The influence of mechanical bending to tuning the hydrogen storage of Ni-functionalized of zigzag type of boron nitride nanotubes (BNNTs) has been investigated using density functional theory (DFT) with reference to the ultimate targets of the US Department of Energy (DOE). Single Ni atoms prefer to bind strongly at the axial bridge site of BN nanotube, and each Ni atom bound on BNNT may adsorb up to five, H2 molecules, with average adsorption energies per hydrogen molecule of )-1.622,-0.527 eV( for the undeformed B40N40-? = 0 , ) -1.62 , 0-0.308 eV( for the deformed B40N40-? = 15, ) -1.589,  -0.310 eV( for the deformed B40N40-? = 30, and ) -1.368-  -0.323 eV( for the deformed B40N40-? = 45 nanotubes respectively. with the H-H bonds between H2 molecules significantly elongated. The curvature attributed to the bending angle has effect on average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.691 wt % for 5H2 Ni B40N40-? = 0, 15, 30, 45. While the desorption activation barriers of the complexes nH2 + Ni B40N40-? = 0 (n = 1-4) are outside the (DOE) domain (-0.2 to -0.6 eV), the complexes nH2 + Ni- B40N40-? = 0 (n = 5) is inside this domain. For nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 1-2) are outside the (DOE) domain, the complexes nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 3-5) are inside this domain. The hydrogen storage of the irreversible 4H2+ Ni- B40N40-? = 0, 2H2+ Ni- B40N40-? = 15, 30, 45 and reversible 5H2+ Ni- B40N40-? = 0, 3H2+ Ni- B40N40-? = 15, 30, 45 interactions are characterized in terms of density of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials. Our calculations expect that 5H2- Ni- B40N40-j = 0, 15, 30, 45 complexes are promising hydrogen storage candidates.

Downloads

Download data is not yet available.

References

E. Durgun, S. Ciraci, and T. Yildirim, Fictionalization of carbon-based nanostructures with light transition-

Metal atoms for hydrogen storage, Phys. Rev. B., 77, 085405, (2008).

J.R. Cheng, L.B. Zhang, R. Ding, Z.F. Ding, X. Wang, and Z. Wang, Grand canonical Monte Carlo simulation

of hydrogen physisorption in single-walled boron nitride nanotubes, Int. J. Hydrogen Energy., 32,3402,

(2007).

C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, and M.S. Dresselhaus, Hydrogen Storage in Single-Walled

Carbon Nanotubes at Room Temperature Science., 286, 1127, (1999).

G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis, Pillared Graphene: A New 3- D Network Nanostructure

for Enhanced Hydrogen Storage, Nano Lett., 8, 3166, (2008).

S. Iijima, Helical microtubules of graphitic carbon, Nature.,354, 56 ,(1991).

D. Golberg, Y. Bando, C.C. Tang, and C.Y. Zhi, Boron Nitride Nanotubes, Adv. Mater., 19, 2413, (2007).

A. Rubio, J.L. Corkill, and M.L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B., 49, 5081,

(1994).

N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Boron Nitride

Nanotubes, Science., 269, 966 (1995).

X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Stability and Band Gap Constancy of Boron Nitride

Nanotubes, Euro phys. Lett., 28, 335 (1994).

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Boron Nitride Nanotubes with Reduced

Numbers of Layers Synthesized by Arc Discharge, Phys. Rev. Lett., 76, 4737, (1996).

E. Bengu, and L.D. Marks, Single-Walled BN Nanostructures, Phys. Rev. Lett., 86, 2385,(2001).

V. Nirmala, P. Kolan daivel, Structure and electronic properties of armchair boron nitride nanotubes, J.

Mol. Struct. (THEOCHEM)., 817, 137, (2007).

J. Chen, and F. Wu, Review of hydrogen storage in inorganic fullerene-like nanotubes, Appl. Phys. AMater.,

, 989, (2004).

R.Z. Ma, Y. Bando, H.W. Zhu, T. Sato, C.L. Xu, and D.H. Wu, J. Am. Chem. Soc., 124, 7672, (2002).

J. Cheng, R. Ding, Y. Liu, Z. Ding, and L. Zhang, Computer simulation of hydrogen physisorption in singlewalled

boron nitride nanotube arrays, Computational Materials Science.,40, 341, (2007).

J. X. Zhao, and Y.H. Ding, The effects of O2 and H2O adsorbates on field- emission properties of an (8,

boron nitride nanotube: a density functional theory study, Nanotechnology., 20, 085704,(2009).

J. H. Yuan, and K. Liew, Effects of boron nitride impurities on the elastic properties of carbon nanotubes,

Nanotechnology., 19, 445703,(2008).

G. Mpourmpakis, and G.E. Froudakis, Why boron nitride nanotubes are preferable to carbon nanotubes for

hydrogen storage?: An ab initio theoretical study, Catal Today., 120, 341, (2007).

B. Baumeier, P. Kruger, and J. Pollmann, Structural, elastic, and electronic properties of SiC, BN, and BeO

nanotubes, Phys. Rev. B., 76, 085407, (2007).

C.C. Tang, Y. Bando, X.X. Ding, S.R. Qi, and D. Golberg, Catalyzed Collapse and Enhanced Hydrogen

Storage of BN Nanotubes, J. Am. Chem. Soc., 124, 14550,(2002).

X.J. Wu, J. L. Yang, J.G. Hou, and Q.S. Zhu, Deformation-induced site selectivity for hydrogen adsorption

On boron nitride nanotubes Phys. Rev. B., 69, 153411, (2004).

S.P. Ju, Y.C. Wang and T.W. Lien, Tuning the electronic properties of boron nitride nanotube by

Mechanical uni-axial deformation: a DFT study, Nanoscale Res. Lett., 6, 160, (2011).

G.G. Wildgoose, E.C. Banks, and G.R. Compton, Metal Nanoparticles and Related Materials Supported on

Carbon Nanotubes: Methods and Applications Small., 2, 182, (2006).

Q.W. Han, and A. Zettl, Functionalized Boron Nitride Nanotubes with a Stannic Oxide Coating: A Novel

Chemical Route to Full Coverage J. Am. Chem. Soc., 125, 2062, (2003).

Y.C. Zhi, Y. Bando, C. Tang, and D. Golberg, Purification of Boron Nitride Nanotubes through Polymer

Wrapping J. Phys. Chem. B. 110, 1525, (2006).

T. Sainsbury, T. Ikuno, D. Okawa, D. Pacile, J.M.J. Frechet, and A. Zettl, Self-Assembly of Gold Nanoparticles

At the Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes, J. Phys. Chem. C., 111,

, (2007).

H.W. Shin, H.S. Yang, A.W. Goddard, and. J. Kang, Ni-dispersed fullerenes: Hydrogen storage and Desorption properties, Appl. Phys. Lett., 88, 053111, (2006).

J.X. Wu, and C.X. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: A densityfunctional

study J. Chem. Phys., 125, 044711 (2006).

J.X. Wu, L. J. Yang, and C.X. Zeng, Adsorption of hydrogen molecules on the platinum-doped boron

nitride nanotubes J. Chem. Phys., 125, 044704, (2006).

S.L. Hu, E.J. Kan, and J.L. Yang, First-principles study of the interaction between H2 molecules and BN

nanotubes with BN divacancies J. Chem. Phys., 127, 164718, (2007).

X.J. Wu, J.L. Yang, J.G. Hou, and Q.S. Zhu, Defects-enhanced dissociation of H2H2 on boron nitride

nanotubes, J. Chem. Phys., 124, 054706,(2006).

A. Shevlin and Z.X. Guo, Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes, Phys.

Rev. B., 76, 024104, (2007).

T. Terao, Y. Bando, M. Mitome, K. Kurashima, C.Y. Zhi, C.C. Tang, and D. Golberg, Effective synthesis of

surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake, Physica

E., 40, 2551, (2008).

R.J. Baierle, P. Piquini, T.M. Schmidt, and S.J. Fazzio, Hydrogen Adsorption on Carbon-Doped Boron Nitride

Nanotubem Phys. Chem. B., 110, 21184, (2006).

F. Li, Y. Xia, M. Zhao, X. Liu, B. Huang, and Y. Ji, C. Song, Theoretical study of hydrogen atom adsorbed on

carbon-doped BN nanotubes, Phys. Lett. A., 357, 369, (2006).

E. Durgun, Y.R. Jang, and S. Ciraci, the Hydrogen storage capacity of Ti-doped boron- nitride and B?Besubstituted

carbon nanotubes, Phys. Rev. B., 76 , 073413, (2007).

N. Arzate, R. A. Va'zquez-Nava, and J. E. Mej'?'a, Linear optical response of (6,0) boron nitride nanotubes

Adsorbed with molecular hydrogen Phys. Stat. Sol. C., 5, 2595, (2008).

J X Zhao, Y H Ding, Theoretical Study of Ni Adsorption on Single-Walled Boron Nitride Nanotubes with

Intrinsic Defects, J Phys Chem C., 112, 5778, (2008).

L.P. Zhang, P. Wu, and M.B. Sullivan, Hydrogen Adsorption on Rh, Ni, and Pd Functionalized Single-

Walled Boron Nitride Nanotubes J. Phys. Chem. C.,15, 4289, (2011).

W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. Liu, L. Liu, Y. Ma and Y. Chen, Oxygen-doped boron

nitride nanosheets with excellent performance in hydrogen storage, Nano Energy., 6, 219, (2014).

Y. Liu, W. Liu, R. Wang, L. Hao, and W. Jiao, Hydrogen storage using Na-decorated graphyne and its boron

Nitride analog, Int. J. Hydrogen Energy., 39, 12757, (2014).

Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys., 98, 5648,

(1993).

Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin

Density calculations: a critical analysis. Can J Phys., 58, 1200, (1980).

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys

Rev., 38, 3098, (1988).

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of

The electron density. Phys Rev B., 37, 789, (1988).

R. Caballol, O. Castell, F. Illas, J.P. Malrieu, and I.P.R. Moreira, Remarks on the Proper Use of the Broken

Symmetry Approach to Magnetic Coupling J. Phys. Chem. A., 101, 7860,(1997).

Ricca A, Bauschlicher CW. Successive binding energies of Fe(CO)5+. J Phys Chem., 98, 12899, (1994).

Russo TV, Martin RI, Hay PJ. Application of gradient corrected density functional theory to the structures

And the rmochemistries of ScF3, TiF4, VF5, and CrF6. J Chem Phys., 102, 8023, (1995).

Siegbahn PE, Crabtree RH. Mechanism of C-H activation by diiron methane monooxygenases: quantum

Chemical studies. J Am Chem Soc., 119, 3103, (1997).

W.R. Duncan, W. Stier, and O.V. Prezhdo, in Nanomaterials: Design and Simulation, edited by P.B.

Balbuena and J. M. Semiinario (Elsevier BV, Amsterdam, 2007).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B.

Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng,

J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers,

K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S.

Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J.

Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L.

Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O.

Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09,Revision D.01 (Gaussian, Inc.,

Wallingford, CT, 2010).

O’Boyle NM, Tenderholt AL, Langner KM. cclib: a library for package-independent computational

Chemistry algorithms. J Comput Chem., 29, 839, (2008).

S. N. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, and Y. Kawazoe, First-principles study of

hydrogen storage over Ni and Rh doped BN sheets, Chem. Phys., 359, 173,(2009).

W. Auwarter, J.T. Kreutz, T. Greber, Osterwalder, XPD and STM investigation of hexagonal boron nitride on

Ni(111), J. Surf. Sci., 429 , 229,(1999).

R.D. Lide, editor. CRC handbook of chemistry and physics. 84th ed. Boca Raton: CRC Press LLC; 2003–

K. Fukui, Role of Frontier Orbitals in Chemical Reactions, Science., 218, 747, (1982).

R.S. Ashraf, and E. Klemm. Synthesis and properties of poly (heteroaryleneethynylene)s consisting of

electron?accepting benzothiadiazole/ quinoxaline units and electron?donating alkyl thiophene units J.

Polym. Sci. A., 43, 6445, (2005).

A.S. Shalabi, A.M. El Mahdy, and H.O. Taha, Theoretical characterization of axial deformation effects on

Hydrogen storage of Ti decorated armchair (5,5), SWCNT Mol. Phys., 111, 661, (2013).

A.S. Shalabi, A.M. El Mahdy, K.A. Soliman, and H.O. Taha, Theoretical characterisation of irreversible and

reversible hydrogen storage reactions on Ni- doped C60 fullerene Mol. Phys., 112, 3057, (2014).

N. Lopez, F. Illas, N. Rosch, and G. Pacchioni, Adhesion energy of Cu atoms on the MgO(001) surface J.

Chem. Phys., 110, 4873, (1999).

D.L. Wang, H.T. Shen, H.M. Gu, and Y.C. Zhai, Ab initio studies on the molecular electrostatic potential of

C50 J. Mol. Struct., 776, 47, (2006).

G. Naray- Szabo, and G.G. Ferenczy, Molecular Electrostatics Chem. Rev., 95, 829, (1995).

J.S. Murray, P. Politzer, in A.M. Space (Ed.), Molecular Orbital Calculations for Biological Systems, Oxford

University Press, New York, 1998, p. 49, Chapter 3.

X. Wang, X. Li, and H. Li, First-principles study of Eu doped carbon nanotubes Phys. Lett., A. 372, 6677,

(2008) .

K. Parikh, K. Cattanach, R. Rao, D.S. Suh, A. Wu, and S.K. Manohar, Flexible vapour sensors using single

walled carbon nanotubes Sens. Actuators B., 113, 55, (2006).

D. Wang, X. Sun, G. Xin, and D. Hou, Ab initio and density functional study on the molecular electrostatic

the potential of C32 Physica B., 405, 2745, (2010).

K. Ragavachari, B. Zhang, J.A. Pople, B.G. Johnson, and P.M.W. Gill, Isomers of C24. Density functional

Studies including gradient corrections Chem. Phys. Lett., 220, 385, (1994).

P. Politzer, and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials,

Plenum, New York, 1981.

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. Oxford University Press, New

York. (1989)

R.G. Pearson, Hard and Soft Acids and Bases. Dowden, Hutchinson, and Ross, Inc., Stroudsburg (1973).

W. Yang, and R. G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and

Catalysis Proc. NatL Acad Sci USA., 82, 6723, (1985).

R.G. Parr, L.V. Szentpaly, and S. B. Liu, Electrophilicity Index J. Am. Chem. Soc., 121, 1922 (1999).

(Chattaraj, P. K.; Sarkar, U, and D.R. Roy, Electrophilicity Index D. R. Chem. Rev.,106, 2065, (2006).

P.K. Chattaraj and D.R. Roy, Update 1 of Electrophilicity Index Chem. Rev., 107, 46 (2007).

Published
2019-08-10
Section
Articles