Influence of Alloying Additives on The Adhesive Properties of Steels: Atomic Level Simulation

Authors

  • Ahmed Tamer AlMotasem Faculty of Science

DOI:

https://doi.org/10.24297/jap.v14i3.7601

Keywords:

molecular dynamics, galling, Vanadium, Titanium and adhesion

Abstract

In the present work we report atomistic molecular dynamics simulation results on adhesion force between self-mated iron/iron, iron/vanadium, iron-cementite and iron/titanium surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron/iron surface. The results showed that adhesion, quantified by the work of adhesion, decreased as the vanadium content increased and highest reduction was obtained for 10 at.% vanadium and  7.5 at.% for titanium. Furthermore, the variation of adhesion force with temperature was studied in the temperature range between 300-700 K and we found that the adhesive force generally is lowered at higher temperature.

Downloads

Download data is not yet available.

References

A. Gåård, P. Krakhmalev, J. Bergström, Wear mechanisms in deep drawing of carbon steel – correlation to laboratory testing, Tribotest. 14 (2008) 1–9. doi:10.1002/tt.49.

A. Gåård, P.V. Krakhmalev, J. Bergström, N. Hallbäck, Galling resistance and wear mechanisms – cold work tool materials sliding against carbon steel sheets, Tribol. Lett. 26 (2007) 67–72. doi:10.1007/s11249-006-9186-5.

A. Gåård, P. Krakhmalev, J. Bergström, J. Hirvonen Grytzelius, H.M. Zhang, Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel, and titanium using atomic force microscopy in ultrahigh vacuum, J. Appl. Phys. 103 (2008) 124301. doi:10.1063/1.2938844.

A. Gåård, Influence of tool microstructure on galling resistance, Tribol. Int. 57 (2013) 251–256. doi:10.1016/j.triboint.2012.08.022.

Fe-V - EVOCD, (n.d.). https://icme.hpc.msstate.edu/mediawiki/index.php/Fe-V (accessed August 7, 2018).

B.-J. Lee, A modified embedded-atom method interatomic potential for the Fe–C system, Acta Mater. 54 (2006) 701–711. doi:10.1016/j.actamat.2005.09.034.

H.-K. Kim, W.-S. Jung, B.-J. Lee, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems, Acta Mater. 57 (2009) 3140–3147. doi:10.1016/j.actamat.2009.03.019.

M.C. Goncalves, F. Margarido, eds., Materials for Construction and Civil Engineering: Science, Processing, and Design, Springer International Publishing, 2015. //www.springer.com/gp/book/9783319082356 (accessed August 12, 2018).

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19. doi:10.1006/jcph.1995.1039.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2010) 015012. doi:10.1088/0965-0393/18/1/015012.

L. Vitos, K. Larsson, B. Johansson, M. Hanson, S. Hogmark, An atomistic approach to the initiation mechanism of galling, Comput. Mater. Sci. 37 (2006) 193–197. doi:10.1016/j.commatsci.2005.08.006.

S. Wei, J. Zhu, liujie Xu, Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel, Tribol. Int. 39 (2006) 641–648. doi:10.1016/j.triboint.2005.04.035.

K. Lee, S. Lee, Y. Kim, H.S. Hong, Y. Oh, S. Kim, The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys, Wear. 255 (2003) 481–488. doi:10.1016/S0043-1648(03)00155-8.

X. Qi, Z. Jia, Q. Yang, Y. Yang, Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hardfacing metal, Surf. Coat. Technol. 205 (2011) 5510–5514. doi:10.1016/j.surfcoat.2011.06.027.

Y.K. Singla, D.K. Dwivedi, N. Arora, On the modeling of dry sliding adhesive wear parameters of vanadium additive iron-based alloys at elevated temperatures, Surf. Coat. Technol. 283 (2015) 223–233. doi:10.1016/j.surfcoat.2015.10.078.

J. Song, D.J. Srolovitz, Adhesion effects in material transfer in mechanical contacts, Acta Mater. 54 (2006) 5305–5312. doi:10.1016/j.actamat.2006.07.011.

P.L. Piotrowski, R.J. Cannara, G. Gao, J.J. Urban, R.W. Carpick, J.A. Harrison, Atomistic Factors Governing Adhesion between Diamond, Amorphous Carbon and Model Diamond Nanocomposite Surfaces, J. Adhes. Sci. Technol. 24 (2010) 2471–2498. doi:10.1163/016942410X508208.

A. Gåård, Wear mechanisms in sheet metal forming: Effects of tool microstructure, adhesion and temperature, Karlstad University, 2008.

D.J. Siegel, L.G. Hector, J.B. Adams, Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC, Surf. Sci. 498 (2002) 321–336. doi:10.1016/S0039-6028(01)01811-8.

A. Arya, E.A. Carter, Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles, J. Chem. Phys. 118 (2003) 8982–8996. doi:10.1063/1.1565323.

P.A. Romero, G. Anciaux, A. Molinari, J.F. Molinari, Friction at the tool–chip interface during orthogonal nanometric machining, Model. Simul. Mater. Sci. Eng. 20 (2012) 055007. doi:10.1088/0965-0393/20/5/055007.

Y. Guo, Y. Liang, Atomistic simulation of thermal effects and defect structures during nanomachining of copper, Trans. Nonferrous Met. Soc. China. 22 (2012) 2762–2770. doi:10.1016/S1003-6326(11)61530-6.

Downloads

Published

2018-08-15

How to Cite

AlMotasem, A. T. (2018). Influence of Alloying Additives on The Adhesive Properties of Steels: Atomic Level Simulation. JOURNAL OF ADVANCES IN PHYSICS, 14(3), 5734–5740. https://doi.org/10.24297/jap.v14i3.7601

Issue

Section

Articles