Compensating Power Depletion Due to Stimulated Raman Scattering in High-Power Delivery Fiber Via Spectral Inversion Revisited in a View of Experimental Implementation
DOI:
https://doi.org/10.24297/jap.v14i1.7157Keywords:
Polarization Spectral inversion, four-wave mixing, incoherent light, amplified spontaneous emissionAbstract
Broadband spectral inversion was proved theoretically to be an effective method to compensate power depletion due to stimulated Raman scattering in high-power delivery fiber. A critical difficulty in implementing the method in experiment is to realize broadband spectral inversion of incoherent light as Raman Stokes waves are incoherent due to their origin from spontaneous emission noise. Broadband spectral inversion of incoherent light is investigated experimentally in this article. A beam from an amplified spontaneous emission (ASE) light source is used as an approximated Raman Stokes waves in the experiment. ASE Spectrum of width of 10.5nm is inverted via four-wave mixing in a highly nonlinear dispersion-shifted fiber in efficiency of -10dB without significant spectrum deformation. A theoretical model for four-wave mixing of ASE incoherent light is established, and based on which the limitation in more broadband spectral inversion of ASE incoherent light is analyzed.
Downloads
References
G. P. Agrawal, 2013,Nonlinear Fiber Optics, Fifth Edition,Academic Press.
V. Fomin, A. Ferin, M. Abramov, I. Samartsev, and V. Gapontsev, 2014 Ultra-high power single mode fiber laser system with non-uniformly configure fiber-to-fiber rod multimode amplifier, US Patent 20140314106 A1.
A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, 2014 22 GW peak-power fiber chirped-pulse-amplification system, Opt. Lett. 39(24), 6875–6878.
https://doi.org/10.1364/OL.39.006875
P. S. Teh, R. J. Lewis, S. U. Alam, and D. J. Richardson, 2013 200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA, Opt. Express 21(22), 25883–25889.
https://doi.org/10.1364/OE.21.025883
L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley and X. Chen, 2005 Suppression of Raman gain in single-transverse-mode dual-hole assisted fiber, Opt. Express 13(22), 8921-8926.
https://doi.org/10.1364/OPEX.13.008921
J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, 2006 Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier, Opt. Lett. 31(17), 2550-2552.
https://doi.org/10.1364/OL.31.002550
J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, 2006 Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off, Opt. Express 14 (12), 5103-5113.
https://doi.org/10.1364/OE.14.005103
A. Shirakawa, Y. Suzuki, S. Arisa, M. Chen, C. B. Olausson, J. K. Lyngso, and J. Broeng, 2013 High-peak power pulse amplification by SRS-suppressed photonic bandgap fiber, in Proceedings of the Pacific Rim Conf., Lasers Electro-Optics, CLEO – Tech. Digest 7–8.
P. Dong, X. Xiao, Y. Tian, S. Gao, and C. Yang, 2008 Compensating power depletion due to stimulated Raman scattering in high-power delivery fiber via spectral inversion, J. Opt. Soc. Am. B, 25 (1), 48-53.
https://doi.org/10.1364/JOSAB.25.000048
S. J. B. Yoo, Wavelength conversion technologies for WDM network applications, 1996 J. Lightwave Technol., 14 (6), 955-966
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=511595
O. Qasaimeh, 2004 Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers, IEEE Photon. Technol. Lett. , 16 (2), 542-544
http://ieeexplore.ieee.org/document/1266484/
A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, 2006 All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber, IEEE Photon. Technol. Lett., 18(12), 1329-1331
http://ieeexplore.ieee.org/document/1637712/?arnumber=1637712
H. Tsuchida, T. Simoyama, H. Ishikawa, T. Mozume, M. Nagase, and J.-i. Kasai, 2007 Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs/AlAs/AlAsSb coupled quantum wells. Opt. Lett. 32(7), 751-753
https://doi.org/10.1364/OL.32.000751
D. Krcmarik, M. Karasek, J. Radil, and J. Vojtech, 2007 Multi-wavelength conversion at 10Gb/s using cross-phase modulation in highly nonlinear fiber, Optics Commu., 278(2) , 402-412
https://doi.org/10.1016/j.optcom.2007.06.004
P. A. Andersen, T. Tokle, G. Yan, C. Peucheret, and P. Jeppesen, 2005 Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 17, 1908-1910
P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, 2006 Highly efficient multichannel wavelength conversion of DPSK signals, J. Lightwave Technol., 24(10) , 3677-3682
https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-24-10-3677
J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, 2002 Applications of fiber-based optical parametric amplifiers, IEEE Journal of Selected Topics in Quantum Electronics, 8, 506-520
http://ieeexplore.ieee.org/document/1027573/?arnumber=1027573
S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, 2006 Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers, Opt. Express, 14(7) , 2873-2879
https://doi.org/10.1364/OE.14.002873
P. Dong, Y. Tian, X. Xiao, and C. Yang, 2012 Wavelength conversion of multichannel spectrum-sliced ASE signals via four-wave mixing in highly nonlinear dispersion-shifted fiber, J. Nonlinear Opt. Phys. Mater. 18 (2) 341-348
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.