Characterization of high quality carbon nanotubes synthesized via Aerosol -CVD

Authors

  • S.H. Abdullayeva Research & Development Center for Hi-Technologies(RDCHT), MCHT, Baku, Azerbaijan

DOI:

https://doi.org/10.24297/jap.v11i3.6943

Abstract

new Aerosol assisted CVD method of synthesizinglarge amount ofhigh quality carbon nanotubes (CNTs) with good structural parameters has been developed. We report the optimization of the process by experimental variables of thesynthesis condition. The effect of temperature in the hot zone of the reactor was investigated, and 840-950 0C was chosen as an optimum synthesis temperature. CNTs, obtained with different solvents as a carbon source have been analyzed, and ferrocene volume in cyclohexane solvent was varied, as the result of which has been grown MWCNTs with diameters of 10-85 nm and a small percent of SWCNTs with diameters of 0.85 and 1.14 nm. The position of Fe nanoparticles in the CNTs was defined by TEM observations, which show that Fe nanoparticles

Downloads

Download data is not yet available.

References

[1]. Winkler, T. Mühl, S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt and B. Büchner. Magnetic force microscopy sensors using iron-filled carbon nanotubes. J. Appl. Phys. 2006;99: 104905/1-5 [2]. F. Wolny, T. Mühl, U. Weissker, K. Lipert, J. Schumann, A. Leonhardt and B. Büchner,Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 2010;21;43:5501
[3]. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters 2006;421: 129–133
[4]. T. Mühl, D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Mönch, M. Ritschel, P. Simon, S. Groudeva-Zotova and C. M. Schneider:Magnetic properties of aligned Fe-filled carbon nanotubes.J. Appl. Phys. 2003;93: 7894-7896 [5]. Müller, S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, B. Büchner: Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon 2006; 44, 9: 1746–1753 [6]. M. Terrones:“Carbon Nanotubes: Synthesis and Properties, Electronic Devices and Other Emerging. International Materials Reviews2004;49, 6: 325-377 [7]. R. Klingeler, S. Hampel, and B. Büchner.Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery.International Journal of Hyperthermia 2008; 24, 6: 496-505 [8]. S. Costa, E. Borowiak-Palen, A. Bachmatiuk, M. H. Rümmeli, T. Gemming and R. J. Kaleńczuk. Filling of carbon nanotubes for bio-applications. Physica Status Solidi, Special Issue: Electronic Properties of Novel Nanostructures2007;244, 11: 4315–4318 [9]. R.G. Mendes, A. Bachmatiuk, B. Büchner, G. Cuniberti, M.H. Rümmeli.Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. 2013;1: 401-428
[10]. J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov: Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001;39: 761–770 [11]. Z. Shi, Y. Lian, F.H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K.T. Yue, S.-L. Zhang. Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. Journal of Physics and Chemistry of Solids 2000; 61: 1031–1036 [12]. T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, and H. Shinohara. New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett.2003;3,6: 769-773
[13]. C Liu, HT Cong, F Li, PH Tan, HM Cheng, K Lu, BL Zhou et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon1999; 37: 1865–8.
[14]. W.K. Masera, , E. Muñoza, A.M. Benitoa, M.T. Martı́neza, G.F. de la Fuenteb, Y. Maniettec, E. Anglaretd, J.-L. Sauvajold. Production of high-density single-walled nanotube material by a simple laser-ablation method.Chemical Physics Letters1998;292, Issues 4–6, 14 :587–590
[15]. R.L. Vander Wal, G.M. Berger, T.M. Ticich.Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Applied Physics A 2003; 77, 7: 885-889
[16]. Changxin Chen, Wenzhe Chen, Yafei ZhangPhysica E:Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol. Low-dimensional Systems and Nanostructures2005;28, 2: 121–127
[17]. K. Koziol, B.O. Boskovic, and N. Yahya.Synthesis of Carbon Nanostructures by CVD Method.Carbon and Oxide Nanostructures, AdvStruct Mater2010;5,23-48.
[18]. S.S.Meysami, F Dillon, A.A.Koos, Z Aslam, N Grobert.Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor. Carbon 2013; 58:151–158 [19]. S.S Meysami, A.A.Koos, F Dillon, N Grobert. Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon 2013; 58:159–169 [20]. S.S.Meysami, A.A.Koos, F Dillon, M Dutta, N Grobert .Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling. Carbon 2015; 88:148–156
[21]. A.G.Nasibulin, S.D.Shandakov, M.Y. Timmermans, O.V.Tolochko, E.I.Kauppinen, Synthesis of Single-Walled Carbon Nanotubes by Aerosol Method.Inorganic Materials: Applied Research 2011; 2, 6: 589–595.
[22]. Y Tian, AG Nasibulin, B Aitchison, T Nikitin, J Pfaler, H Jiang, Z Zhu, L Khriachtchev, DP Brown, EI Kauppinen, Controlled Synthesis of Single-Walled Carbon Nanotubes in an Aerosol Reactor. J. Phys. Chem. C 2011; 115:7309–7318 [23]. Krause, M. Ritschel, Ch. Tschner, S. Oswald, W. Gruner, A. Leonhardt, P. Ptschke. Comparison of Nanotubes Produced by Fixed Bed and Aerosol-CVD Methods and Their Electrical Percolation Behaviour in Melt Mixed Polyamide 6.6 Composites. Composites Science and Technology 2010;70: 151–160
[24]. Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of doublewalledcarbon nanotubes. ChemCommun. 2003; 12:1442–1443
[25]. Seo, J.W., Hernadi, K., Miko, C., and Forro, L. Behaviour of Transition Metals Catalysts over Laser-Treated Vanadium Support Surfaces in the Decomposition of Acetylene. Applied Catalysis A: General, 2004; 260: 87. [26]. Lee, C.J., Lyu, S.C., Kim, H.-W., Park, J.W., Jung, H.M., and Park, J. Carbon nanotubes produced by tungsten-based catalyst using vapor phase deposition method. Chemical Physics Letters2002;361 (5):469-472
[27]. Yokomichi, H., Sakai, F., Ichihara, M., and Kishimoto, N. Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3)nmH2O as catalyst. Physica B, 2002;323: 311-313 [28]. Lee, C.J., Park, J., and Yu, J.A. Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chemical Physics Letters2002;360, 250-255 [29]. I Mönch, A Leonhardt, A Meye, S Hampel, R KozhuharovaKoseva, D Elefant, M P Wirth and B Büchner.Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical applications, Journal of Physics: Conference Series 2007;61: 820–824
[30]. B.Palen. Iron filled carbon nanotubes for bio-applications. Materials Science-Poland, 2008; 26, 2:413-418
[31]. K. Hernadi, A. Fonseca, J. B.Nagy,D. Bernaerts and A. A. Lucay. Fe-catalyzed carbon nanotube formation.Carbon1996;34, 10: 1249-1257
[32]. S.H. Abdullayeva, N.N. Musayeva, R.B. Jabbarov, T. Matsuda.Synthesis of carbon nanotubes by gasification of petroleum coke. FIZIKA 2013;3:3-7
[33]. Flahaut E, Peigney A, Laurent C, Rousset A. Synthesis of single-walled carbon nanotube-Co–MgO composite powders and extraction of the nanotubes. J.Mater Chem 2000;10(2):249–52.
[34]. S. Tang,Z. Zhong,Z. Xiong,L. Sun,L. Liu,J. Lin *,Z.X. Shen,K.L. Tan. Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters 2001;350, 1-2: 19-26
[35]. Y.Gogotsi and J. A. Libera. M. Yoshimura. Hydrothermal Synthesis of Multiwall Carbon Nanotubes. J. Mater. Res.2000; 15, 12: 2591-2594
[36]. K. Sinha, D. W. Hwang, L. Hwang. A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method. Chemical Physics Letters, 2000;332: 455-460
[37]. UWeissker, S.Hampel, A.Leonhardt and B. Buchner. Carbon Nanotubes Filled with Ferromagnetic Materials. Materials 2010; 3: 4387-4427 [38]. C. Muller,A.Leonhardt, M.C.Kutz, and B.Büchner. Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene. J. Phys. Chem. C2009; 113:2736-2740 [39]. P.J.F. Harris, S.C. Tsang. A simple technique for the synthesis of filled carbon nanoparticles. Chemical Physics Letters 1998;293: 53-58 [40]. A.G. Nasibulin, A.Moisala, H. Jiang and E.I. Kauppinen. Carbon nanotube synthesis from alcohols by a novel aerosol method. Journal of Nanoparticle Research , 2006; 8: 465-475 [41]. R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, P. R. Somani, M. Umeno. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous and Mesoporous Materials 2006; 96: 184-190
[42]. Szabó, C.Perri, A.Csató, G. Giordano, D.Vuono and J.B. Nagy. Synthesis Methods of Carbon Nanotubes and Related Materials. Materials 2010;3(5): 3092-3140 [43]. C.D. Scott, S. Arepalli, P. Nikolaev, and R.E. Smalley.Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 2001; 72:573-580 [44]. C.Oncel and Y.Yurum. Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters. Fullerenes, Nanotubes, and Carbon Nanostructures 2006; 14: 17-37
[45]. Z. Li, J. Chen, X.Zhang, Y. Lib, K. Fung. Catalytic synthesized carbon nanostructures from methane using nanocrystallineNi.Carbon2002;40: 409-415
[46]. S. S.Meysami, A. A. Koo´s, F.Dillon, N.Grobert. Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon 2013; 58: 159-169
[47]. N.Tam,N. Xuan Nghia, N. The Quynh, P. Hong Khoi and P.Ngoc Minh. Analyzing the Purity of Carbon Nanotubes by Using Different Methods. Journal of the Korean Physical Society 2008;52, 5:1382-1385
[48]. M. C. García-Gutiérrez, A. Nogales, J. J. Hernández, D. R. Rueda, T. A. Ezquerra. X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites, Opt. PuraApl. 2007; 40 (2): 195 -205
[49]. E.Casanova, M.Aguirre, A.Elguezabal and F.Magaña. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source. Materials ;2013, 6, 6:2534-2542 [50]. L.Bokobza, J.Bruneel, M.Couzi. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vibrational Spectroscopy 2014;74:57-63 [51]. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim.Raman Spectrum of Graphene and Graphene Layers. Phys.Rew.Letter 2006; 97: 187401-4 [52]. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects Solid State Communications 2007;143:47-57
[53]. L. Bokobza, J. Zhang. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters 2012; 6, 7: 601-608 [54]. A.C. Ferrari and J. Robertson.Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B2000; 61, 20:14095 -14107
[55]. A.C. Ferrari and J. Robertson. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B, 2001;64: 075414-13 [56]. C. Thomsen and S. Reich. In Light Scattering in Solid IX: Novel Materials and Techniques; Topics in Applied Physics; Cardona M., editor. , Ed.; Springer Verlag: Berlin, 2007; 108: 115-235
[57]. S. Costa, E. Borowiak-Palen, M. Kruszyñska, A. Bachmatiuk, R.J. Kalenczuk. Characterization of Carbon Nanotubes by Raman spectroscopy. Materials Science-Poland 2008; 26, 2:433-441
[58]. I.Kunadiana, R.Andrewsa, D.Qiana, M. Pinar Mengu. Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon2009;47: 384-395

Downloads

Published

2015-12-28

How to Cite

Abdullayeva, S. (2015). Characterization of high quality carbon nanotubes synthesized via Aerosol -CVD. JOURNAL OF ADVANCES IN PHYSICS, 11(4), 3229–3240. https://doi.org/10.24297/jap.v11i3.6943

Issue

Section

Articles