Sound as a transverse wave

Authors

  • Armando T. Canero Universidad de Buenos Aires

DOI:

https://doi.org/10.24297/jap.v13i1.5670

Keywords:

sound, wave, transverse, phonons, gravitational wave.

Abstract

This paper presents sound propagation based on a transverse wave model which does not collide with the interpretation of physical events based on the longitudinal wave model, but responds to the correspondence principle and allows interpreting a significant number of scientific experiments that do not follow the longitudinal wave model. Among the problems that are solved are: the interpretation of the location of nodes and antinodes in a Kundt tube of classical mechanics, the traslation of phonons in the vacuum interparticle of quantum mechanics and gravitational waves in relativistic mechanics.

Downloads

Download data is not yet available.

Author Biography

Armando T. Canero, Universidad de Buenos Aires

FIUBA Facultad de Ingenieria Universidad de Buenos Aires. Departamento de Física. Docente.

References

- Arnold V., 1980. "Mathematical Methods of Classical Mechanics". Springer Verlag NY, v.I, L.989. Pág. 252.
- Coombs E. 2007. “Investigating Student Understanding of Sound as a Longitudinal Wave”. Electronic Theses and Dissertations. Paper 314. University of Maine.
- de Broglie L. 1924. Recherchessur la théorie des quanta.Tesis doctoral, Universidad de la Sorbona.
- Díaz Alonso F., 2006 “Análisis de consecuencias y zonas de planificación para explosiones industriales accidentales”. Tesis Doctoral. Universidad de Murcia.
- Dmitriyev Valery P., 2004 "Elasticity and electromagnetism" Lomonsov University P.O. Box 117574, Russia.
- Foá Torres. Luis E. F., 1999. "Resonancias en el espacio de Fock: Optimizacion del Efecto Túnel para la generación de Ultrasonido (SASER). Universidad Nacional de Córdoba Facultad de Matemáticas. Astronomía y Física. Trabajo especial.
- Garcia Carlos A., 1981. "Termodinámica Técnica", Librería y Editorial Alsina, Capítulos XV, págs. 283 a 288.
- Landau y Lifshitz, 1969. "Teoría de la elasticidad", Volumen 7, Curso de Física Teórica, Editorial Reverte S.A. Capítulo III, Ondas Elásticas, págs.141 a 144.
- Liu Mario, "Maxwell Equations and Irreversibility" ar XIV: cond-mat/9806319 VI 26 jun 1998.
- Marmanis, Haralabos, 1996. "Analogy between the electromagnetic and hydrodynamic equations: application to turbulence", M S University o Illinois 1996, mayo de 2000. Brown University Library.
- Moreira Marco Antonio, 1997. Instituto de Física, UFRGS Caixa Postal 15051 91501-970 Porto Alegre, RS.
- Rousseaux, Germain, 2001. "¿Las ecuaciones de Maxwell son incompletas?" Anales de la fondations Luis de Broglie. Vol 26. no 4. 2001.
- Rousseaux, Germain y Etienne, Gouyon, 2002. "A propos d ' une analogie entre la mecanique des fluides et I'electromagnetisme" Bulletin de L'union des physiciensVol 9ó fevrier 2002.
- Rousseaux, Germain, 2003. "On de physical meaning of the gauge conditions of classical Electromagnetism: the hydrodynamics analogue viewpoint".
- Rozas Guillermo, 2004. "Espectroscopia Raman en cavidades acústicas" Instituto Balseiro. Centro Atómico Bariloche (C EA).
- Smorodinski Ya, 1981. “La Temperatura” Editorial MIR.
- Schlichting, Hernann, 1955. “Boundary LNOayer Theory”. Pergamon Press LTD, Chapter 3, Derivation of the equations of motion of a compressible viscous fluid (Navier-Stokes equations), págs. 47 a 58.
- Torres del Castillo G. F., 1990. "La ecuación de Hamilton-Jacobi para sistemas hamiltonianos" Revista Mexicana de Física 36 No. 3(1990) -/78-493.

Downloads

Published

2017-01-18

How to Cite

Canero, A. T. (2017). Sound as a transverse wave. JOURNAL OF ADVANCES IN PHYSICS, 13(1), 4522–4534. https://doi.org/10.24297/jap.v13i1.5670

Issue

Section

Articles