Computing a Counting Polynomial of an Infinite Family of Linear Polycene Parallelogram Benzenoid Graph P(a,b)

Authors

  • Mohammad Reza Farahani Iran University of Science and Technology (IUST), Narmak, Tehran 16844

DOI:

https://doi.org/10.24297/jap.v3i1.2088

Keywords:

Molecular graph, benzenoid graph, linear polycene parallelogram, Omega polynomial, Pi Π(G, x) polynomial, Pi Π(G) index, qoc strip

Abstract

Omega polynomial was defined by M.V. Diudea in 2006 as  where the number of edges co-distant with e is denoted by n(e). One can obtain Theta Θ, Sadhana Sd and Pi Π polynomials by replacing xn(e) with n(e)xn(e), x|E|-n(e) and n(e)x|E|-n(e) in Omega polynomial, respectively. Then Theta Θ, Sadhana Sd and Pi Π indices will be the first derivative of Θ(x), Sd(x) and Π(x) evaluated at x=1. In this paper, Pi Π(G,x) polynomial and Pi Π(G) index of an infinite family of linear polycene parallelogram benzenoid graph P(a,b) are computed for the first time.

Downloads

Download data is not yet available.

Author Biography

Mohammad Reza Farahani, Iran University of Science and Technology (IUST), Narmak, Tehran 16844

Department of Applied Mathematics

References

H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 1947. 69, 17-20.

M.V. Diudea, S. Cigher, P.E. John, Omega and Related Counting Polynomials. MATCH Commun. Math. Comput.

(1), 237-250, (2008).

P.E. John, A.E. Vizitiu, S. Cigher, M.V. Diudea, CI index in tubular nanostructures. MATCH Commun. Math. Comput. Chem. 57, 479–484 (2007).

M.V. Diudea, Omega Polynomial. Carpath. J. Math. 2006 22, 43–47.

M.V. Diudea, S. Cigher, A.E. Vizitiu, O. Ursu, P.E. John, Omega polynomial in tubular nanostructures. Croatica

Chemica Acta. 79, 445-448, (2006).

P.V. Khadikar, On a Novel Structural Descriptor PI . Nat. Acad. Sci. Letters 23, 113-118, (2000).

P. V. Khadikar, V.K. Agrawal and S. Karmarkar. Prediction of Lipophilicity of Polyacenes Using Quantitative Structure-Activity Relationships. Bioorg. Med. Chem. 10, (2002) 3499- 3507.

A.R. Ashrafi, M. Ghorbani, M. Jalali, Computing Sadhana Polynomial of V-Phenylenic Nanotubes and Nanotori. Indian J. Chem. 47A(4), 535-537 (2008).

N. Trinajsti?, Chemical Graph Theory, 2nd ed.; CRC Press: Boca Raton, FL. 1992.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

A.R. Ashrafi, M. Ghorbani and M. Jalili. Computing Omega and Sadhana Polynomials of C12n+4 Fullerenes. Digest. J. Nanomater. Bios. 2009 4(3), 403–406.

A. Bahrami and J. Yazdani. Omega and Sadhana polynomials of H-naphtalenic nanotubes and nanotori. Digest. J. Nanomater. Bios. 2008 3(4), 309-314.

M.V. Diudea, S. Cigher, A.E. Vizitiu, M.S. Florescu and P.E. John, Omega polynomial and its use in nanostructure description. J. Math. Chem. 45, (2009), 316–329

M.V. Diudea, A.E. Vizitiu, F. Gholaminezhad and A.R.Ashrafi. Omega polynomial in twisted (4,4) tori. MATCH

Commun. Math. Comput. Chem. 60(3), 2008; 945-953.

M.V. Diudea, Omega polynomial in twisted ((4,8)3)R tori. MATCH Commun. Math. Comput. Chem. 60(3), 2008; 935-944.

M.V. Diudea, A.E. Vizitiu, D. Janezic, Cluj and related polynomials applied in correlating studies. Journal of Chemical Information and Modeling, 47(3), (2007), 864-874.

M.V. Diudea, A.E., Vizitiu, and S. Cigher. Omega and Related Polynomials in Crystal-like Structures. MATCH

Commun. Math. Comput. Chem. 65 (2011) 131-142.

M. Ghorbani. A note of of IPR Fullerenes. Digest. J. Nanomater. Bios. 2011 6(2), 599-602.

M. Ghorbani and M. Ghazi. Computing Omega and PI polynomials of graphs. Digest. J. Nanomater. Bios. 2010 5(4), 843-849.

M. Ghorbani and M. Jalali. The Vertex PI, Szeged and Omega Polynomials of Carbon Nanocones CNC4[n]. MATCH Commun. Math. Comput. Chem. 62 (2009) 353-362

M. Ghorbani and M. Jalili. Omega and Sadhana Polynomials of an Infinite Family of Fullerenes. Digest. J. Nanomater. Bios. 2009 4(1), 177 - 182.

M.R. Farahani, K. Kato and M.P. Vlad. Omega Polynomials and Cluj-Ilmenau Index of Circumcoronene Series of Benzenoid. Studia Univ. Babes-Bolyai. Chemia 2012 57(3), 177-182.

M.R. Farahani. Computing T(G,x) and ?(G,x) Polynomials of an Infinite Family of Benzenoid. Acta Chim. Slov. 2012, 59, 965–968.

M.R. Farahani. Omega and related counting polynomials of Triangular Benzenoid Gn and linear hexagonal chain LHn. Journal of Chemica Acta 2013 2, 43-45.

M.R. Farahani. Omega and Sadhana Polynomials of Circumcoronene Series of Benzenoid. World Applied Sciences Journal. 2012, 20(9), 1248-1251.

M.R. Farahani. Omega Polynomial and Omega Index of a Benzenoid System. Studia UBB, Chemia LIX, 2, (2014) 71- 78.

M.R. Farahani. Omega and Sadhana Polynomial of Bezenoid Tb,a. New Front Chem(AWUT), 2015, 24(1), 61-67.

M.R. Farahani. Sadhana Polynomial and its Index of Hexagonal System Ba,b. Int. J. Computational and Theoretical Chemistry. 1(2), (2013), 7-10.

M.R. Farahani. Counting Polynomials of Benzenoid System. Int. J. New Innovation in Science and Technology,

(1),2014,14-19.

M.R. Farahani. ?(G,x) and ?(G,x) polynomials of Hexagonal trapezoid system. Int. J. Computational Sciences & Applications. (2013), In press.

M.R. Farahani. Computing Theta Polynomial and Theta Index of V-phenylenic Planar, Nanotubes and Nanotoris. Int. J. Theoretical Chemistry. 1(1), September (2013), 01-09.

M.R. Farahani. ?(G,X) Polynomial and ?(G) Index of V-phenylenic Planar, Nanotubes and Nanotori. World Journal of Science and Technology Research. 1(7), September (2013), 135-143.

M.R. Farahani. Computing the Omega polynomial of an infinite family of the linear parallelogram P(n,m). Journal of Advances in Chemistry. 1 (2013) 106-109.

M.R. Farahani. On Sadhana polynomial of the linear parallelogram P(n,m) of benzenoid graph. Journal of Chemica Acta. 2(2), (2013), 95-97.

M.R. Farahani. Thete Polynomial of an infinite family of the linear parallelogram P(n,m). Submit for publication. (2013).

P.E., John, A.E., Vizitiu, S., Cigher, M.V. Diudea, CI index in tubular nanostructures. MATCH Commun. Math.

Comput. Chem, 57(2), (2007) 479-484.

M. Saheli, M. Neamati, A. Ili? and M.V. Diudea. Omega Polynomial in a Combined Coronene-Sumanene Covering Croat. Chem. Acta.. 2010, 83(4), 395–401.

A.E. Vizitiu, S. Cigher, M.V. Diudea and M.S. Florescu, Omega polynomial in ((4,8)3) tubular nanostructures MATCH Commun. Math. Comput. Chem, 57(2), (2007) 457-462.

J. Yazdani and A. Bahrami. Padmakar-Ivan,Omega and Sadhana polynomials of HAC5C6C7 Nanotubes. Digest. J. Nanomater. Bios. 2009 4(3), 507-510.

M. Alaeiyan, R. Mojarad, J. Asadpour. A new method for computing eccentric connectivity polynomial of an infinite family of linear polycene parallelogram benzenod. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5(7), 761 -763.

M. Alaeiyan, and J. Asadpour. Computing the MEC polynomial of an infinite family of the linear parallelogram P(n,n). Optoelectron. Adv. Mater.-Rapid Commun. 2012, 6(1-2), 191-193.

P.V. Khadikar. Padmakar-Ivan Index in Nanotechnology. Iranian Journal of Mathematical Chemistry, 2010, 1(1), 7?42

Downloads

Published

2013-11-10

How to Cite

Farahani, M. R. (2013). Computing a Counting Polynomial of an Infinite Family of Linear Polycene Parallelogram Benzenoid Graph P(a,b). JOURNAL OF ADVANCES IN PHYSICS, 3(1), 186–190. https://doi.org/10.24297/jap.v3i1.2088

Issue

Section

Articles