A new generalization on metric space and its metrizability.
DOI:
https://doi.org/10.24297/jam.v23i.9681Keywords:
metric space., metrizability, generalized φ-metric spaceAbstract
In this paper, our particular scope is to give a new generalization for the metric function and after that a proof of the metrizability of generalized φ-metric space. This new approach is influenced by the Chittenden’s metrization theorem.
Downloads
References
Aimar, H., Iaffei, B. and Nitti, L., On the Macias-Segovia metrization of quasi-metric spaces, Rev. Un. Mat. Argentina, 41 (1998), No. 2, 67–75.
An, V. T., Tuyen, Q. L. and Dung, V. N., Stone-type theorem on b-metric spaces and applications, Topology Appl., 185-186 (2015), 50–64.
Chittenden, E. W., On the equivalence of Ecart and voisinage, Trans. Amer. Math. Soc., 18 (1917), 161–166.
Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Univ. Ostraviensis, 1 (1993), 5–11.
Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
Das, A., Kundu, A., Bag, T,. A new approach to generalize metric functions. Int. J. Nonlinear Amal. Appl. 14(2023) 3, 279-298.
Jleli, M. and Samet, B., On a new generalization of metric spaces, J. Fixed Point Theory Appl., (2018), 20:128.
Niemytski, V. W., On the third axiom of metric space, Trans. Amer. Math. Soc., 29 (1927), 507–513.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stela Çeno , Ledia Subashi
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.