A new generalization on metric space and its metrizability.

Authors

  • Stela Çeno Department of Mathematics, Faculty of Natural Science, University of Elbasan “Aleksandër Xhuvani”, Albania
  • Ledia Subashi Department of Mathematics, Faculty of Natural Science, University of Tirana, Albania

DOI:

https://doi.org/10.24297/jam.v23i.9681

Keywords:

metric space., metrizability, generalized φ-metric space

Abstract

In this paper, our particular scope is to give a new generalization for the metric function and after that a proof of the metrizability of generalized φ-metric space. This new approach is influenced by the Chittenden’s metrization theorem.

Downloads

Download data is not yet available.

References

Aimar, H., Iaffei, B. and Nitti, L., On the Macias-Segovia metrization of quasi-metric spaces, Rev. Un. Mat. Argentina, 41 (1998), No. 2, 67–75.

An, V. T., Tuyen, Q. L. and Dung, V. N., Stone-type theorem on b-metric spaces and applications, Topology Appl., 185-186 (2015), 50–64.

Chittenden, E. W., On the equivalence of Ecart and voisinage, Trans. Amer. Math. Soc., 18 (1917), 161–166.

Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Univ. Ostraviensis, 1 (1993), 5–11.

Czerwik, S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.

Das, A., Kundu, A., Bag, T,. A new approach to generalize metric functions. Int. J. Nonlinear Amal. Appl. 14(2023) 3, 279-298.

Jleli, M. and Samet, B., On a new generalization of metric spaces, J. Fixed Point Theory Appl., (2018), 20:128.

Niemytski, V. W., On the third axiom of metric space, Trans. Amer. Math. Soc., 29 (1927), 507–513.

Downloads

Published

2024-11-17

How to Cite

Çeno , S. ., & Subashi, L. . (2024). A new generalization on metric space and its metrizability . JOURNAL OF ADVANCES IN MATHEMATICS, 23, 110–113. https://doi.org/10.24297/jam.v23i.9681

Issue

Section

Articles