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Abstract;

In this paper, our particular scope is to give a new generalization for the metric function and after that a proof of
the metrizability of generalized φ-metric space. This new approach is influenced by the Chittenden’s metrization
theorem.

Keywords: generalized φ-metric space, metrizability, metric space.

Introduction

Metric spaces are the most generalized spaces, with lots of new concepts and a huge number of articles,
exploring properties and new theories about them. In 1993, Czerwik [4] presented the b-metric function,
generalizing the metric function. Later in 1998, [5] he altered this concept by replacing the coefficient instead𝐾≥1
of the coefficient 2 in the triangle inequation, presenting the definition bellow:

Definition 1.1. [5] Let X be a nonempty set and be a function for all which fulfills the𝑑: 𝑋×𝑋→𝑅≥0 𝑥, 𝑦, 𝑧∈𝑋
following conditions:
1) 𝑑 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦;
2) 𝑑 𝑥, 𝑦( ) = 𝑑 𝑦, 𝑥( );
3) 𝑑 𝑥, 𝑧( )≤𝐾 𝑑 𝑥, 𝑦( ) + 𝑑 𝑦, 𝑧( )[ ],   𝐾≥1.

Then d is called a b-metric function and the pair is called a b-metric space.(𝑋, 𝑑)

After that, definitions of strong b-metric and S-metric were given as generalizations of the b-metric function. In
[6] a new approach of generalizing metric function was given with the definition below:

Definition 1.2. [6] The function , is called a -metric if it satisfies the following conditions:𝑑
ϕ

: 𝑋×𝑋→𝑅≥0 ϕ
a) 𝑑

ϕ
𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦;

b) 𝑑
ϕ

𝑥, 𝑦( ) = 𝑑
ϕ

𝑦, 𝑥( );
c) , , with a function fulfilling:𝑑

ϕ
𝑥, 𝑧( ) ≤ 𝑑

ϕ
𝑥, 𝑦( ) + 𝑑

ϕ
𝑦, 𝑧( ) + ϕ(𝑥, 𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧∈𝑋 ϕ: 𝑋×𝑋×𝑋→𝑅≥0

1) if or ;ϕ 𝑥, 𝑦, 𝑧( ) = 0 𝑥 = 𝑧 𝑦 = 𝑧
2) ;ϕ 𝑥, 𝑦, 𝑧( ) = ϕ 𝑦, 𝑥, 𝑧( )
3) such that , whenever or , .∀ε > 0, ∃δ > 0 ϕ 𝑥, 𝑦, 𝑧( ) < ε 𝑑

ϕ
𝑥, 𝑦( ) < δ 𝑑

ϕ
𝑦, 𝑧( ) < δ ∀𝑥, 𝑦, 𝑧∈𝑋

The ordered pair is called a -metric space.(𝑋, 𝑑
ϕ

) ϕ
Aimar, H, [1] in 1998, proved the metrizability of the b-metric space, the generalized notion presented by
Czverwik in [5]. Later in 2015, An. V, [2] gave a proof of the metrizability of b-metric spaces with a constant 𝐾 > 0
, with the expectation that the distance function is continuous in one variable.

Theorem 1.3. [2] Let be a b-metric space. If D is continuous in one variable, then every open cover of X𝑋, 𝐷, 𝐾( )
has an open refinement which is both locally finite and discrete.σ −

Corollary 1.4. [2] Let be a b-metric space. If D is continuous in one variable, then X is metrizable.𝑋, 𝐷, 𝐾( )

Also, for the definition of the -metric space in [6] it is given a metrizability proof for this space by a Stone-typeϕ
theorem.

Now let us recall metrizability theorems due to Niemytski and Wilson [8] and Chittenden’s metrization theorem
[3].
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Theorem 1.5. [8] Let X be a topological space and be a distance function on X. If the distance𝐹: 𝑋×𝑋→[0, ∞)
function F satisfies:

i. for all𝐹 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦 𝑥, 𝑦∈𝑋
ii. for all , and one of the following conditions:𝐹 𝑥, 𝑦( ) = 𝐹(𝑦, 𝑥) 𝑥, 𝑦∈𝑋
iii. Given a point and a number , there exists such that if and𝑎∈𝑋 ϵ > 0 ϕ 𝑎, ϵ( ) > 0 𝐹 𝑎, 𝑏( ) < ϕ 𝑎, ϵ( )

then ;𝐹 𝑏, 𝑐( ) < ϕ 𝑎, ϵ( ) 𝐹 𝑎, 𝑐( ) < ε
iv. If and , are two sequences in X such that and as then𝑎∈𝑋 𝑎

𝑛{ }
𝑛∈𝑁

𝑏
𝑛{ }

𝑛∈𝑁
𝐹(𝑎

𝑛
, 𝑎)→0 𝐹(𝑎

𝑛
, 𝑏

𝑛
)→0 𝑛→∞

as .𝐹(𝑏
𝑛
, 𝑎)→0 𝑛→∞

v. For each point and a positive number k, there is a positive number r such that if for which𝑎∈𝑋 𝑏∈𝑋
, and c is any point then ;𝐹(𝑎, 𝑏)≥𝑘 𝐹 𝑎, 𝑐( ) + 𝐹(𝑏, 𝑐)≥𝑟

then the topological space X is metrizable.

Theorem 1.6. [3] Let X be a topological space and be a distance function on X. If the distance𝐹: 𝑋×𝑋→[0, ∞)
function F satisfies the following conditions:

i. for all𝐹 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦 𝑥, 𝑦∈𝑋
ii. for all𝐹 𝑥, 𝑦( ) = 𝐹(𝑦, 𝑥) 𝑥, 𝑦∈𝑋
iii. (Uniformly regular) For every there exists such that for all , andε > 0 ϕ ε( ) > 0 𝑥, 𝑦, 𝑧∈𝑋 𝐹 𝑥, 𝑦( ) < ϕ ε( )

imply ,𝐹 𝑦, 𝑧( ) < ϕ ε( ) 𝐹 𝑥, 𝑧( ) < ε

then the topological space X is metrizable.

Main Results

In this part, we present a new generalization for the -metric function. After that, two alternative proofs for theϕ
metrizability of this new space are listed, by using Niemytski and Wilson [8] theorem for the metrizability and
Chittenden’s metrization theorem [3].

Definition 2.1. The function , is called a generalized φ-metric function if satisfies the following𝐺: 𝑋×𝑋→𝑅≥0
conditions:

A. ;𝐺 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦
B. ;𝐺 𝑥, 𝑦( ) = 𝐺 𝑦, 𝑥( )

C. , , and , with a function𝐺 𝑥, 𝑧( )≤𝐾[𝐺 𝑥, 𝑦( ) + 𝐺 𝑦, 𝑧( )] + φ(𝑥, 𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧∈𝑋 𝐾≥1 φ: 𝑋×𝑋×𝑋→𝑅≥0
fulfilling:

D. if or ;φ 𝑥, 𝑦, 𝑧( ) = 0 𝑥 = 𝑧 𝑦 = 𝑧
E. ;φ 𝑥, 𝑦, 𝑧( ) = φ 𝑦, 𝑥, 𝑧( )
F. such that , whenever or , .∀ε > 0, ∃δ > 0 φ 𝑥, 𝑦, 𝑧( ) < ε 𝐺 𝑥, 𝑦( ) < δ 𝐺 𝑦, 𝑧( ) < δ ∀𝑥, 𝑦, 𝑧∈𝑋

The ordered pair is called a generalized φ-metric space.(𝑋, 𝐺)
Theorem 2.2. Let be a generalized φ-metric space. Then X is metrizable.(𝑋, 𝐺)

Proof. Let be a generalized φ-metric space. By the definition of the generalized φ-metric function(𝑋, 𝐺)
, it satisfies the first two conditions of Niemytski and Wilson’s metrization theorem:𝐺: 𝑋×𝑋→𝑅≥0

i. , for all ;𝐺 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦 𝑥, 𝑦∈𝑋
ii. for all ;𝐺 𝑥, 𝑦( ) = 𝐺 𝑦, 𝑥( ) 𝑥, 𝑦∈𝑋

To prove the third condition, we are going to use condition (v) of the theorem 1.5. Let and be a positive real𝑎∈𝑋 𝑠
number such that . Suppose that such that . If c is any point in X then by the𝑠 > φ(𝑎, 𝑏, 𝑐) 𝑏∈𝑋 𝐺(𝑎, 𝑏)≥𝑠
definition of a generalized φ-metric spacewe have:

𝐺 𝑎, 𝑏( )≤𝐾 𝐺 𝑎, 𝑐( ) + 𝐺 𝑐, 𝑏( )[ ] + φ 𝑎, 𝑏, 𝑐( )
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⇒𝐺 𝑎, 𝑐( ) + 𝐺 𝑐, 𝑏( ) ≥ 𝑠−φ 𝑎,𝑏,𝑐( )
𝐾 = 𝑟 > 0

This shows that the generalized φ-metric space satisfies the locally regular condition, and X is metrizable.

Theorem 2.3. Let be a generalized φ-metric space. Then X is metrizable.(𝑋, 𝐺)

Proof 1. Let X be a generalized φ-metric space then the function satisfies the first two conditions of𝐺: 𝑋×𝑋→𝑅≥0
Chittenden’s metrization results:

i. for all ;𝐺 𝑥, 𝑦( ) = 0⟺𝑥 = 𝑦 𝑥, 𝑦∈𝑋
ii. for all ;𝐺 𝑥, 𝑦( ) = 𝐺 𝑦, 𝑥( ) 𝑥, 𝑦∈𝑋

Now to prove the third condition, let , for , there exists such thatε > 0 ε − φ(𝑥, 𝑧, 𝑦)∈𝑅 δ > 0
. Let us choose . If and then0 < δ < ε − φ 𝑥, 𝑧, 𝑦( ) ϕ ε( ) = δ

2𝐾 𝐺 𝑥, 𝑦( ) < δ
2𝐾 𝐺 𝑦, 𝑧( ) < δ

2𝐾
. Then by the third condition of the G function the following will hold:𝐾 𝐺 𝑥, 𝑦( ) + 𝐺 𝑦, 𝑧( )[ ] + φ(𝑥, 𝑧, 𝑦) < δ

𝐺 𝑥, 𝑧( ) ≤ 𝐾[𝐺 𝑥, 𝑦( ) + 𝐺 𝑦, 𝑧( )] + φ 𝑥, 𝑧, 𝑦( )

< δ < ε − φ 𝑥, 𝑧, 𝑦( ) + φ 𝑥, 𝑧, 𝑦( ) = ε

Thus: For .𝐺 𝑥, 𝑦( ) < ϕ ε( ), 𝐺 𝑦, 𝑧( ) < ϕ ε( )⟹ 𝐺 𝑥, 𝑧( ) < ε

So, the third condition of the Chittenden’s metrization theorem holds, which implies that is metrizable.(𝑋, 𝐺)

Proof 2. An alternative way to prove the metrizability of the generalized φ-metric space is by using point (iii) and
(iv) of theorem 1.5.

Let and , are two sequences in X such that and as . Let ,𝑎∈𝑋 𝑎
𝑛{ }

𝑛∈𝑁
𝑏

𝑛{ }
𝑛∈𝑁

𝐺 𝑎
𝑛
, 𝑎( )→0 𝐺 𝑎

𝑛
, 𝑏

𝑛( )→0 𝑛→∞ ε > 0

for , there exists such that . Let us choose , thereε − φ(𝑎, 𝑏
𝑛
, 𝑎

𝑛
)∈𝑅 δ > 0 0 < δ < ε − φ(𝑎, 𝑏

𝑛
, 𝑎

𝑛
) ϕ ε( ) = δ

2𝐾

exists such that:𝑘
1
, 𝑘

2
∈𝑁

and .𝐺 𝑎
𝑛
, 𝑎( ) < δ

2𝐾 ,  ∀𝑛≥𝑘
1

𝐺 𝑎
𝑛
, 𝑏

𝑛( ) < δ
2𝐾 ,  ∀𝑛≥𝑘

2

If and , then by the definition of the generalized φ-metric space, we have:𝑛≥𝑚𝑎𝑥 {𝑘
1
, 𝑘

2
} 𝑎≠𝑏

𝑛

𝐺 𝑎, 𝑏
𝑛( )≤𝐾[𝐺 𝑎, 𝑎

𝑛( ) + 𝐺 𝑎
𝑛
, 𝑏

𝑛( )] + φ(𝑎, 𝑏
𝑛
, 𝑎

𝑛
)

.≤𝐾[ δ
2𝐾 + δ

2𝐾 ] + φ 𝑎, 𝑏
𝑛
, 𝑎

𝑛( ) = ε

This shows that as . So, by the metrization criteria of the Niemytski and Wilson, we conclude𝐺 𝑏
𝑛
, 𝑎( )→0 𝑛→∞

that the generalized -metric space is metrizable.φ

Conclusions

The generalized φ-metric space is metrizable.
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