DOI: [https://doi.org/10.24297/jam.v23i.9681](https://doi.org/10.24297/jam.v23i.9656)

A new generalization on metric space and its metrizability.

Stela Çeno¹, Ledia Subashi²

¹Department of Mathematics, Faculty of Natural Science, University of Elbasan "Aleksandër Xhuvani", Albania

²Department of Mathematics, Faculty of Natural Science, University of Tirana, Albania

Abstract;

In this paper, our particular scope is to give a new generalization for the metric function and after that a proof of the metrizability of generalized φ-metric space. This new approach is influenced by the Chittenden's metrization theorem.

Keywords: generalized φ-metric space, metrizability, metric space.

Introduction

Metric spaces are the most generalized spaces, with lots of new concepts and a huge number of articles, exploring properties and new theories about them. In 1993, Czerwik [4] presented the b-metric function, generalizing the metric function. Later in 1998, [5] he altered this concept by replacing the coefficient $K \ge 1$ instead of the coefficient 2 in the triangle inequation, presenting the definition bellow:

Definition 1.1. [5] Let *X* be a nonempty set and $d: X \times X \rightarrow R \ge 0$ be a function for all $x, y, z \in X$ which fulfills the following conditions:

- 1) $d(x, y) = 0 \Leftrightarrow x = y;$
- 2) $d(x, y) = d(y, x);$
- 3) $d(x, z) \le K[d(x, y) + d(y, z)]$, $K \ge 1$.

Then d is called a b -metric function and the pair (X, d) is called a b -metric space.

After that, definitions of *strong b-metric* and *S-metric* were given as generalizations of the b-metric function. In [6] a new approach of generalizing metric function was given with the definition below:

Definition 1.2. [6] The function d_{φ} : *X×X→R*≥0, is called a φ-*metric* if it satisfies the following conditions:

- a) $d_{\phi}(x, y) = 0 \Leftrightarrow x = y;$
- b) $d_{\phi}(x, y) = d_{\phi}(y, x);$
- c) $d_{\phi}(x, z) \le d_{\phi}(x, y) + d_{\phi}(y, z) + \phi(x, y, z)$, $\forall x, y, z \in X$, with $\phi: X \times X \times X \to R \ge 0$ a function fulfilling:
- 1) $\phi(x, y, z) = 0$ if $x = z$ or $y = z$;
- 2) $\phi(x, y, z) = \phi(y, x, z);$
- 3) $\forall \varepsilon > 0$, 3δ > 0 such that $\varphi(x, y, z) < \varepsilon$, whenever $d_{\varphi}(x, y) < \delta$ or $d_{\varphi}(y, z) < \delta$, ∀x, y, z∈X.

The ordered pair $(X, d_{\overline{\varphi}})$ is called a φ *-metric space.*

Aimar, H, [1] in 1998, proved the metrizability of the b-metric space, the generalized notion presented by Czverwik in [5]. Later in 2015, An. V, [2] gave a proof of the metrizability of b-metric spaces with a constant $K > 0$, with the expectation that the distance function is continuous in one variable.

Theorem 1.3. [2] Let (X, D, K) be a b-metric space. If D is continuous in one variable, then every open cover of X has an open refinement which is both locally finite and σ -discrete.

Corollary 1.4. [2] Let (X, D, K) be a b-metric space. If D is continuous in one variable, then *X* is metrizable.

Also, for the definition of the ϕ-metric space in [6] it is given a metrizability proof for this space by a Stone-type theorem.

Now let us recall metrizability theorems due to Niemytski and Wilson [8] and Chittenden's metrization theorem [3].

Theorem 1.5. [8] Let X be a topological space and $F: X \times X \rightarrow [0, \infty)$ be a distance function on X. If the distance function *F* satisfies:

- i. $F(x, y) = 0 \Leftrightarrow x = y$ for all $x, y \in X$
- ii. $F(x, y) = F(y, x)$ for all $x, y \in X$, and one of the following conditions:
- iii. Given a point $a \in X$ and a number $\epsilon > 0$, there exists $\phi(a, \epsilon) > 0$ such that if $F(a, b) < \phi(a, \epsilon)$ and $F(b, c) < \phi(a, \epsilon)$ then $F(a, c) < \varepsilon$;
- iv. If $a \in X$ and $\{a_n\}_{n\in N}$, $\{b_n\}_{n\in N}$ are two sequences in *X* such that $F(a_n, a) \to 0$ and $F(a_n, b_n) \to 0$ as $n \to \infty$ then ${b_n}$ _{$n \in N$} $F(a_n, a) \rightarrow 0$ and $F(a_n, b_n) \rightarrow 0$ as $n \rightarrow \infty$
	- $F(b_n, a) \rightarrow 0$ as $n \rightarrow \infty$.
- v. For each point $a \in X$ and a positive number k, there is a positive number *r* such that if b∈X for which $F(a, b) \ge k$, and *c* is any point then $F(a, c) + F(b, c) \ge r$;

then the topological space *X* is metrizable.

Theorem 1.6. [3] Let *X* be a topological space and $F: X \times X \rightarrow [0, \infty)$ be a distance function on *X*. If the distance function *F* satisfies the following conditions:

- i. $F(x, y) = 0 \Leftrightarrow x = y$ for all $x, y \in X$
- ii. $F(x, y) = F(y, x)$ for all $x, y \in X$
- iii. (Uniformly regular) For every $\varepsilon > 0$ there exists $\phi(\varepsilon) > 0$ such that for all x, y, z EX, $F(x, y) < \phi(\varepsilon)$ and $F(y, z) < \phi(\varepsilon)$ imply $F(x, z) < \varepsilon$,

then the topological space *X* is metrizable.

Main Results

In this part, we present a new generalization for the ϕ-metric function. After that, two alternative proofs for the metrizability of this new space are listed, by using Niemytski and Wilson [8] theorem for the metrizability and Chittenden's metrization theorem [3].

Definition 2.1. The function $G: X \times X \rightarrow R \geq 0$, is called a *generalized* φ -metric function if satisfies the following conditions:

- A. $G(x, y) = 0 \Leftrightarrow x = y$;
- B. $G(x, y) = G(y, x);$
- C. $G(x, z) \leq K[G(x, y) + G(y, z)] + \varphi(x, y, z)$, $\forall x, y, z \in X$, and $K \geq 1$, with $\varphi: X \times X \times X \to R \geq 0$ a function fulfilling:
- D. $\varphi(x, y, z) = 0$ if $x = z$ or $y = z$;
- E. $\varphi(x, y, z) = \varphi(y, x, z);$
- F. $\forall \varepsilon > 0, \exists \delta > 0$ such that $\varphi(x, y, z) < \varepsilon$, whenever $G(x, y) < \delta$ or $G(y, z) < \delta$, $\forall x, y, z \in X$.

The ordered pair (*X*, *G*) is called a *generalized* **φ**-metric space. **Theorem 2.2.** Let (X, G) be a *generalized* φ *-metric space*. Then *X* is metrizable.

Proof. Let (X, G) be a *generalized* φ -metric *space*. By the definition of the *generalized* φ -metric function $G: X \times X \rightarrow R \geq 0$, it satisfies the first two conditions of Niemytski and Wilson's metrization theorem:

- i. $G(x, y) = 0 \Leftrightarrow x = y$, for all $x, y \in X$;
- ii. $G(x, y) = G(y, x)$ for all $x, y \in X$;

To prove the third condition, we are going to use condition (v) of the theorem 1.5. Let $a \in X$ and s be a positive real number such that $s > \varphi(a, b, c)$. Suppose that $b \in X$ such that $G(a, b) \geq s$. If *c* is any point in *X* then by the definition of a *generalized φ-metric space* we have:

$$
G(a,b) \leq K[G(a,c) + G(c,b)] + \varphi(a,b,c)
$$

$$
\Rightarrow G(a,c) + G(c,b) \ge \frac{s - \varphi(a,b,c)}{K} = r > 0
$$

This shows that the *generalized φ-metric space* satisfies the locally regular condition, and *X* is metrizable.

Theorem 2.3. Let (X, G) be a *generalized* φ *-metric space.* Then *X* is metrizable.

Proof 1. Let *X* be a generalized φ -metric space then the function $G: X \times X \to R \geq 0$ satisfies the first two conditions of Chittenden's metrization results:

- i. $G(x, y) = 0 \Leftrightarrow x = y$ for all $x, y \in X$;
- ii. $G(x, y) = G(y, x)$ for all $x, y \in X$;

Now to prove the third condition, let $\varepsilon > 0$, for $\varepsilon - \varphi(x, z, y) \in R$, there exists $\delta > 0$ such that $0 < \delta < \varepsilon - \varphi(x, z, y)$. Let us choose $\varphi(\varepsilon) = \frac{\delta}{2K}$. If $G(x, y) < \frac{\delta}{2K}$ and $G(y, z) < \frac{\delta}{2K}$ then $\frac{\delta}{2K}$ and $G(y, z) < \frac{\delta}{2K}$ 2K $K[G(x, y) + G(y, z)] + \varphi(x, z, y) < \delta$. Then by the third condition of the G function the following will hold:

$$
G(x, z) \le K[G(x, y) + G(y, z)] + \varphi(x, z, y)
$$

$$
< \delta < \varepsilon - \varphi(x, z, y) + \varphi(x, z, y) = \varepsilon
$$

Thus: For $G(x, y) < \varphi(\varepsilon)$, $G(y, z) < \varphi(\varepsilon) \Rightarrow G(x, z) < \varepsilon$

So, the third condition of the Chittenden's metrization theorem holds, which implies that (X, G) is metrizable.

Proof 2. An alternative way to prove the metrizability of the generalized φ -metric space is by using point (iii) and (iv) of theorem 1.5.

Let $a \in X$ and $\{a_n\}_{n \in N}$, $\{b_n\}_{n \in N}$ are two sequences in X such that $G(a_n, a) \to 0$ and $G(a_n, b_n) \to 0$ as $n \to \infty$. Let $\varepsilon > 0$, ${b_n}$ _{$n \in N$} $G(a_{n'} a) \rightarrow 0$ and $G(a_{n'} b_{n}) \rightarrow 0$ as $n \rightarrow \infty$. Let $\varepsilon > 0$, for $\varepsilon - \varphi(a, b_n, a_n) \in R$, there exists $\delta > 0$ such that $0 < \delta < \varepsilon - \varphi(a, b_n, a_n)$. Let us choose $\varphi(\varepsilon) = \frac{\delta}{2K}$, there 2K exists k_{1} , k_{2} EN such that:

$$
G\Big(a_n,a\Big)<\tfrac{\delta}{2K},\;\forall n{\geq}k_1\text{ and }G\Big(a_n,b_n\Big)<\tfrac{\delta}{2K},\;\forall n{\geq}k_2.
$$

If $n{\ge}max\{k_{1},k_{2}\}$ and $a{\ne}b_{n}$, then by the definition of the generalized φ-metric space, we have:

$$
G(a, bn) \le K[G(a, an) + G(an, bn)] + \varphi(a, bn, an)
$$

$$
\le K[\frac{\delta}{2K} + \frac{\delta}{2K}] + \varphi(a, bn, an) = \varepsilon.
$$

This shows that $G\big(b_{n},a\big){\rightarrow} 0$ as $\,n{\rightarrow}\infty.$ So, by the metrization criteria of the Niemytski and Wilson, we conclude that the generalized φ-metric space is metrizable.

Conclusions

The generalized φ-metric space is metrizable.

References

- [1] Aimar, H., Iaffei, B. and Nitti, L., *On the Macias-Segovia metrization of quasi-metric spaces*, Rev. Un. Mat. Argentina, 41 (1998), No. 2, 67–75.
- [2] An, V. T., Tuyen, Q. L. and Dung, V. N., *Stone-type theorem on b-metric spaces and applications*, Topology Appl., 185-186 (2015), 50–64.
- [3] Chittenden, E. W., *On the equivalence of Ecart and voisinage*, Trans. Amer. Math. Soc., 18 (1917), 161–166.
- [4] Czerwik, S., *Contraction mappings in b-metric spaces*, Acta Math. Univ. Ostraviensis, 1 (1993), 5–11.
- [5] Czerwik, S., *Nonlinear set-valued contraction mappings in b-metric spaces*, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
- [6] Das, A., Kundu, A., Bag, T,. *A new approach to generalize metric functions*. Int. J. Nonlinear Amal. Appl. 14(2023) 3, 279-298.
- [7] Jleli, M. and Samet, B., *On a new generalization of metric spaces*, J. Fixed Point Theory Appl., (2018), 20:128.
- [8] Niemytski, V. W., *On the third axiom of metric space*, Trans. Amer. Math. Soc., 29 (1927), 507–513.

