An Engineering Boundary Eigenvalue Problem Studied by Functional-Analytic Methods

Authors

  • L. Kohaupt Berlin University of Applied Sciences and Technology

DOI:

https://doi.org/10.24297/jam.v23i.9574

Keywords:

Compact operator with simple eigenvalues, Boundary eigenvalue problem, Boundary value problem, Expansion in series of eigenvectors, Generalized Rayleigh-Quotient, Real parts of eigenvalues

Abstract

In this paper, we take up a boundary value problem (BVP) from the area of engineering that is described in a book by L. Collatz. Whereas there, the BVP is cast into a boundary eigenvalue problem (BEVP) having complex eigenvalues, here the original BVP is transformed into a BEVP that has positive simple eigenvalues and real eigenfunctions. Further, unlike there, we derive the inverse T = G of the differential operator L associated with the BEVP, show that T = G is compact in an appropriate real Hilbert space H, expand T u = Gu and u for all u ∈ H in a respective series of eigenvectors, and obtain max-, min-, min-max, and max-min-Rayleigh-quotient representation formulas of the eigenvalues. Specific examples for generalized Rayleigh quotients illustrate the theoretical findings. The style of the paper is expository in order to address a large readership.

Downloads

Download data is not yet available.

References

[ 1] N.I. Achieser, I.M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum (Theory of Linear Operators in Hilbert Space;

German Translation of the Russian Original), Akademie-Verlag, Berlin, 1968.

[ 2] Sh. Agmon, Lecture on Elliptic Boundary Value Problems, D. van Nostrand, New York Chicago San Francisco, 1965.

[ 3] W.E. Boyce, R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 8th Edition, John Wiley & Sons, Inc.,

Hoboke, 2005.

[ 4] I.N. Bronstein, K.A. Semendjajew, Taschenbuch der Mathematik (I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics;

German translation of the Russian original), Verlag Harri Deutsch, Z ̈urich und Frankfurt/M., 1967.

[ 5] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York Toronto London,

[ 6] L. Collatz, Eigenwertaufgaben mit technischen Anwendungen (Eigenvalue Problems with Applications in Engineering), Geest & Portig K.-G., Leipzig, 1949.

[ 7] R. Courant, D. Hilbert, Mathematische Methoden der Physik, Band 1 (Methods of Mathematical Physics, Vol. 1), Springer-Verlag,

Berlin Heidelberg New York, 1968.

[ 8] R.D. Grigorieff, Diskrete Approximation von Eigenwertproblemen. III: Asymptotische Entwicklungen (Discrete Approximation of

Eigenvalue Problems. III: Asymptotic Expansions), Num. Math. 25(1975)79-97.

[ 9] H. Heuser, Funktionalanalysis (Functional Analysis), B.G. Teubner, Stuttgart, 1975.

L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces; English Translation of the Russian Original), Pergamon Press,

L.W.Kantorowitsch, G.P. Akilow, Funktionalanalysis in normierten R ̈aumen (Functional Analysis in Normed Spaces; German Trans-

lation of the Russian Original), Akademie-Verlag Berlin, 1965.

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

K. Knopp, Theory of Functions, Parts I and II (English Translation of the German Original), Dover Publications, 1975.

L. Kohaupt, Construction of a Biorthogonal System of Principal Vectors for Matrices A and A∗ with Applications to ̇x = A x, x(t0) =

x0, Journal of Computational Mathematics and Optimization 3(3)(2007)163-192.

L. Kohaupt, Biorthogonalization of the Principal Vectors for the Matrices A and A∗ with Applications to the Computation of the

Explicit Representation of the Solution x(t) of ̇x = A x, x(t0) = x0, Applied Mathematical Sciences 2(20)(2008)961-974.

L. Kohaupt, Introduction to a Gram-Schmidt-type Biorthogonalization Method, Rocky Mountain Journal of Mathematics

(4)(2014)1265-1279.

L. Kohaupt, Generalized Rayleigh-quotient formulas for the eigenvalues of self-adjoint matrices, Journal of Algebra and Applied

Mathematics 14(1)(2016)1-26.

L. Kohaupt, Generalized Rayleigh-quotient formulas for the eigenvalues of diagonalizable matrices, Journal of Advances in Mathematics 14(2)(2018)7702-7728.

L. Kohaupt, Generalized Rayleigh-quotient formulas for the eigenvalues of general matrices, Universal Journal of Mathematics and

Applications 4(1)(2021)9-25.

L. Kohaupt, Eigenvalue Expansion of Nonsymmetric Linear Compact Operators in Hilbert Space, CAMS IV(2)(2021)55-74.

L. Kohaupt, Generalized Rayleigh-Quotient Formulas for the Real Parts, Imaginary Parts, and Moduli of Simple Eigenvalues of

Compact Operators, CAMS 5(2)(2022)48-77.

W. Luther, K. Niederdrenk, F. Reutter, H. Yserentant, Gew ̈ohnliche Differentialgleichungen, Analytische und numerische Behandlung (Ordinary Differential Equations, Analytic and Numerical Treatment), Vieweg, Braunschweig Wiesbaden, 1987.

S.G. Michlin, Variationsmethoden der Mathematischen Physik (Variational Methods of Mathematical Physics; German Translation

of the Russian Original), Akademie-Verlag, Berlin, 1962.

B.N. Parlett, D.R. Taylor, Z.A.Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Mathematics of Computation

(169)(1985)105-124.

E.C. Pestel, F.A. Leckie, Matrix Methods in Elastomechanics, McGraw-Hill Book Company, Inc., New York San Francisco Toronto

London, 1963.

W.I. Smirnow, Lehrgang der h ̈oheren Mathematik, Teil V (V.I.Smirnov, A Course on Higher Mathematics, Part V; German translation

of the Russian original), VEB Deutscher Verlag der Wissenschaften, Berlin, 1971.

W. Schnell, D. Gross, W. Hauger, Technische Mechanik, Band 2: Elastostatik (Mechanics for Engineers, Vol. 2: Elastostatics),

Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985.

F. Stummel, Diskrete Konvergenz linearer Operatoren II (Discrete Convergence of Linear Operators, Part II), Mathematische

Zeitschrift 120 (1971)231-264.

F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980.

F. Stummel, L. Kohaupt, Eigenwertaufgaben in Hilbertschen R ̈aumen. Mit Aufgaben und vollst ̈andigen L ̈osungen (Eigenvalue Prob- lems in Hilbert Spaces. With Exercises and Complete Solutions), Logos Verlag, Berlin, 2021.

A.E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York London, 1958.

St. P. Timoshenko, J. M. Gere, Theory of Elastic Stability, McGraw-Hill Kogakusha, Ltd., Tokyo et al., 1961.

W.T. Thomson, M.D. Dahleh, Theory of Vibration with Applications, Prentice Hall, Inc., Upper Saddle River, New Jersey, 1998.

W. Walter, Gew ̈ohnliche Differentialgleichungen. Eine Einf ̈uhrung. (Ordinary Differential Equations. An Introduction), Springer,

Berlin et al., 2000.

D. Werner, Funktionalanalysis (Functional Analysis), 8th Edition, Springer Spektrum, 2018.

Downloads

Published

2024-01-29

How to Cite

Kohaupt, L. . (2024). An Engineering Boundary Eigenvalue Problem Studied by Functional-Analytic Methods. JOURNAL OF ADVANCES IN MATHEMATICS, 23, 11–38. https://doi.org/10.24297/jam.v23i.9574

Issue

Section

Articles