On Hesitant Fuzzy Primary Ideal In Γ- ring
DOI:
https://doi.org/10.24297/jam.v21i.9251Keywords:
hesitant fuzzy semiprimary ideal, hesitant fuzzy primary ideal , Gamma ringAbstract
In this paper, we introduce the notions of hesitant fuzzy primary ideal and completely primary ideal, hesitant fuzzy semiprimary ideals of a -ring, and discuss the relation between hesitant primary ideal, completely primary and semiprimary
Downloads
References
Barnes W.E : “ on the Γ-rings of No pacific J. Math. , vol.18 , pp. 411-422: (1966)
Carios R.J .Aicantud a, Torra Vicenc, ‟Decomposition Theorems And Extension Principles For Hesitant Fuzzy Sets Fuzzy Sets” In Formation Fusion 41 (2018) 48-56.
FairoozeTaleel. A, Abbasi M.Y And Sabahat Ail Khan”Hesitant Fuzzy Ideal In Semigroup With Two Frontiers ”Journal of Basic Applied Engineering Research , Volume 4,Issue 6, July-September, 2017,PP.385-388.
Kyuno S. ; ″ Prime Ideal In Gamm Ring″ Paciic Journal Of Mathematics (VOL.98,NO.2 , 1982)
Liao H.C , Xu, Z.S. "Subtraction and division operations over hesitant fuzzy sets" ,Journal of Inteligent and fuzzy Systems (2013b), doi:10.3233/IFS-130978.
Luh J. ; “ The stracture of primitive gamma rings” ; Osaka J. Math. ; vol. ; pp. 267-274 ; (1970)
Malik.D,Mordeson.J.N ”Fuzzy Maximal,Radical, And Primary Ideal Of Aring ” Information Sciences 5, 238-250(1991).
Mohammad Y.A , Aakif F. , Khan T.S. and Hilla K. ; “ A Hesitant fuzzy set approach to ideal theory in Γ-semigroups”; Advances in Fuzzy systems; (2018)
Nobusawa N. ;” on a generalization of the ring theory” ; Osaka J. Math. : vol. 1 pp. 81-89 : (1964).
Zeshui Xu , ”Hesitant Fuzzy Sets Theory “Springer Chan Heidelberg New York Pordrecht Hondoh Dol,10.10071978-3-319-04711-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mazen Omran Karim, Rand Shafea Ghanim
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.