New types of almost contact metric submersions

Authors

  • T.Tshikuna Matamba Département de Mathématiques,Université Pédagogique de Kananga, B.P. 282-Kananga,

DOI:

https://doi.org/10.24297/jam.v20i.9064

Keywords:

almost para-Hermitian manifolds, almost paracontact manifolds, almost contact metric submersions, almost contact metric manifolds, almost Hermitian manifolds, Riemannian submersions

Abstract

We introduce the concept of conjugaison in contact geometry. This concept allows to define new structures which are used as base space of a Riemannian submersion. With these new structures, we study new three types of almost contact metric submersions.

Downloads

Download data is not yet available.

References

Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol.203, Birkhäuser, New York, 2002.

Chinea, D., Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34(1985),89-104.

Chinea, D., Almost contact metric submersions and structure equations,

Publicationes Mathematicae, Debrecen 34 (1987), 207-213.

Falcitelli, M., Ianus, S. and Pastore, A.M., "Riemannian submersions and related topics", World Sci. Pub.Co. 2004.

Gray, A. and Hervella, L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.

G¨und¨uzalp, Y. and Sahin, B., Paracontact semi-Riemannian submersions, Turk. J. Math., 37(2013), 114-128.

O’Neill, B., The fundamental equations of a submersion, Michigan Math.J., 13 (1966), 459-469.

Oubi˜na, J. A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.

Sato, I., On a structure similar to the almost contact structure I, Tensor, N.S., 30 (1976), 219-224.

Sato, I., On a structure similar to the almost contact structure II, Tensor, N.S., 31 (1977), 199-205.

Shukla, S.S. and Shankar Verna, U.,Paracomplex Paracontact Pseudo- Riemannian Submersions, Hindawi Publ. Corporation Geometry, Vol. 2014, Article ID 616487.

Watson, B.,The differential geometry of two types of almost contact metric submersions, in The Math. Heritage of C.F. Gauss, (Ed. G.M. Rassias), World Sci. Publ. Co. Singapore, 1991, pp. 827-861.

Downloads

Published

2021-08-07

How to Cite

Matamba, T. (2021). New types of almost contact metric submersions. JOURNAL OF ADVANCES IN MATHEMATICS, 20, 345–355. https://doi.org/10.24297/jam.v20i.9064

Issue

Section

Articles

Most read articles by the same author(s)