Generalized Symmetric (f,g) – Biderivations on Lattices

Authors

  • Mazen Karim Department of Mathematics, College of Education, University of Al-Qadisiyah

DOI:

https://doi.org/10.24297/jam.v19i.8919

Keywords:

generalized symmetric (f,g)- biderivation, Symmetric(f,g)- bi derivation, Distributive Lattices, Modular lattices, Lattices

Abstract

In this paper, we introduce the notion of generalized symmetric  -derivations on lattices, also some properties of generalized symmetric - derivations we studies.

Downloads

Download data is not yet available.

References

A. J. Bell ; “The Co-information Lattice ”; In 4th International Symposion On Independent component Analysis and Blind signal Separation (ICA2003) ;(pp. 921 – 926) .

C. Carpineto and G. Romano; “ Information retrieval through hyrid navigation of lattice representations ”;INT. J. Hum.-comput. Stud. ;45(5) ;1996 ;553-578 . doi.org/10.1006/ijhc.1996.0067

C. Jana and M. Pal ; “ Generalized Symmetric Bi-derivations of Lattices”; ANNALS of Communications in Math. ; 1(1)(2018) ; 74 – 84 .

G. Birkhoof ; “ Lattice Theory” ; American Mathematical society ; New York ; 1940 .

G. Durfee ; “ Crypt. Analysis of RSA using Algebraic and Lattice Methods” ; Ph.D. Dissertation ; Department of Computer Science ; Stanford University ; 2002.

K.H. Kim and Y.H. Lee ; Symmetric Bi-(f,g)-derivations in Lattices” ;J. of The CHUNG CHEONG Math. Soc. ; 29(3)(2016); 491 – 502 . doi.org /10.14403/jcms.2016.29.3.491

M. A. Chaudhry and A.R.Khan ; “On Symmetric f-biderivations of Lattices” ; Quaset. Math. ; 35(2)(2012) ; 203 – 207 . doi.org/10.2989/16073606.2012.697257

M. A. Javed and M.Aslam ; “ On Generalized Symmetric f-biderivations of Lattices” ;Bulletin of the International Mathematical Virtual Institute ; 11(1) (2020); 69 – 77 . doi.org / 10.7251/BIMVI2101069J

N. O. Alshehri ; “ Generalized Derivations of Lattices ”;Int. J. Contemp. Math. Sci. ; 5(13) (2010);629-640 .

R. Balbes and P.Bwingar ; “ Distributive Lattices ” ;University of Missouri Press ;Columbia ;United States ; 1974 .

R. S. Sandhu ; “Lattices and Ordered Algebraic Structures;In Proceeding of the 4th European Symposium on Research in computer Security ; Rome ; Italy ; 1996 ; 65-79 .

T. S. Blyth ; “Lattices and Ordered Algebraic Structures” ; Springer – varlag London Limited ; 2004.

X. L. Xin , T. Y. Li and J. H. Lu ; “ On Derivations of Lattices” ; Inform. Sci. ; 178(2)(2008) ; 307 – 316 . doi.org/10.1016/j.ins.2007.08.018

Y. ceven ; “ On Characterization of Lattices Using the Generalized Symmetric Bi-Derivations” ; Bull.Int. Math. Virtual Inst. ; 9(1)(2019) ; 95-102 . doi.org: 10.7251/BIMVI1901095C

Y. Ceven; “Symmetric Bi-derivations of Lattices” ;Quaset. Math. ; 32(2)(2009);241- 245 . doi.org/10.2989/QM.2009.32.2.6.799

Downloads

Published

2020-12-12

How to Cite

Karim, M. (2020). Generalized Symmetric (f,g) – Biderivations on Lattices. JOURNAL OF ADVANCES IN MATHEMATICS, 19, 107–113. https://doi.org/10.24297/jam.v19i.8919

Issue

Section

Articles