Intransitive Permutation Groups with Bounded Movement Having Maximum Degree

Authors

  • Behnam Razzagh  Islamic Azad University

DOI:

https://doi.org/10.24297/jam.v16i0.8136

Abstract

Let G be a permutation group on a set withUntitled4.pngno fixed points in Untitled5.pngand let m be a positive integer. If for each subset T of Untitled6.pngthe  size |Tg\T| is bounded, for gEG, we define the movement of g as the max|Tg\T| over all subsets T of Untitled6.png . In this paper we classified all of permutation groups on set Untitled6.png   of size 3m + 1 with 2 orbits such that has movement m . 2000 AMS classification subjects: 20B25

Downloads

Download data is not yet available.

Author Biography

Behnam Razzagh,  Islamic Azad University

Department of Mathematics Islamic Azad University,Talesh Branch,Talesh, Iran

References

C.E.Praeger,On permutation groups with bounded movement,J.Algebra ,144(1991),436-442.

C.E.Praeger, The separation theorem for group actions, in ”ordered Groups and Infinite Groups”(W.charles Holland, Ed.), Kluwer Academic, Dordrecht/ Boston/ Lond, 1995.

A.Hassani,M.Khayaty,E.I.Khukhro and C.E.Praeger, Transitive permutation groups with bounded movement having maximum degree.J. Algebra,214(1999),317-337.

A.Gardiner,C.E.Praeger,Transitive permutation groups with bounded movement,J.Algebra 168(1994)798-803.

A.Mann,C.E.Praeger,ransitive permutation groups of minimal movement, J.Algebra 181(1996)903-911.

H.Wielandt,Finite Permutation Groups,Academic Press,NewYork,1968.

P.S.Kim, Y.Kim,Certain groups with bounded movement having the maximal number of orbits,J.Algebra 252(2002)74-83.

L.Brailovsky, Structure of quasi-invariant sets, Arch.Math.,59 (1992),322- 326.

L.Brailovsky, D.Pasechnix , C.E.Praeger, Subsets close to invarianr subset of quasi-invariant subsets for group actions ,,Proc.Amer. Math.Soc. ,123(1995),2283-2295.

J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a permutation Group with Bounded Movement, J.Algebra,214 (1999),625- 630.

P.M.Neumann, The structure of finitary Permutation groups, Arch. Math. (Basel) 27(1976),3-17.

B.H.Neumann, Groups covered by permutable subsets, J. London Math soc., 29(1954), 236-248. 7

P.M.Neumann, C.E.Praeger, On the Movement of permutation Group, J.Algebra, 214, (1999)631-635.

Downloads

Published

2019-03-29

How to Cite

Razzagh, B. (2019). Intransitive Permutation Groups with Bounded Movement Having Maximum Degree. JOURNAL OF ADVANCES IN MATHEMATICS, 16, 8340–8347. https://doi.org/10.24297/jam.v16i0.8136

Issue

Section

Articles