Intransitive Permutation Groups with Bounded Movement Having Maximum Degree

Behname Razzaghmaneshi
Department of Mathematics
Islamic Azad University,Talesh Branch,Talesh, Iran
Email: behnamrazagi@yahoo.com

Abstract

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset Γ of Ω the size $\left|\Gamma^{g} \backslash \Gamma\right|$ is bounded, for $g \epsilon G$, we define the movement of g as the $\max \left|\Gamma^{g} \backslash \Gamma\right|$ over all subsets Γ of Ω. In this paper we classified all of permutation groups on set Ω of size $3 m+1$ with 2 orbits such that has movement m.

2000 AMS classification subjects: 20B25

1 Introduction

Let G be a transitive permutation group on a set Ω such that G is not 2-group and let m be a positive integer. In [], C.E.Oraeger shown that if $\left|\Gamma^{g} \backslash \Gamma\right| \leq m$ for every subset Γ of Ω and all $g \in G,|\Omega| \leq\left\lfloor\frac{2 m p}{p-1}\right\rfloor$, where p is the least odd prime dividing $|G|$. If $p=3$ the upper bounded for $|\Omega|$ is $3 m$, and the groups G attaining this bound where classified in the work of Gardiner ([2]), Mann and the C.E.Praeger $([3])$. Here we show that if G be a intrasitve permutation group on set Ω of size $3 m+1$ with 2 orbits such that has movement m, and let B is the semi-direct product of $Z_{2}^{2} . Z_{3}$. Then G is satisfy one of the following : $G_{1}=B \times H^{d}$ or $G_{2}=A_{4} \times H^{d}$, where $H=Z_{3}$ or $S_{3}, d=m-2$, and A_{4} is the permutation group on 4 elements. Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for a subset Γ of Ω the size $\left|\Gamma^{g} \backslash \Gamma\right|$ is
bounded, for $g \in G$, we define the movement of Γ as $\operatorname{move}(\Gamma)=\max _{g \in G}\left|\Gamma^{g} \backslash \Gamma\right|$. If move $(\Gamma) \leq m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is define as the maximum of move (Γ) over all subsets Γ, that is,

$$
m:=\operatorname{move}(G):=\sup \left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid \Gamma \subseteq \Omega, g \in G\right\} .
$$

This notion was introduced in [3]. By [3,Theorem 1], if G has bounded movement m,then Ω is finite. Moreover both the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m. In particular it was shown that the number of G-orbits is at most $2 m-1$. 1.The main result is the following theorem.
Theorem 1.1. Let G a permutation group on set Ω of size $3 m+1$ with 2 orbits such that has movement m, and let B is the semi-direct product of $Z_{2}^{2} . Z_{3}$. Then G is $G_{1}=B \times H^{d}$ or $G_{2}=A_{4} \times H^{d}$, where $H=Z_{3}$ or $S_{3}, d=m-2$, and A_{4} is the permutation group on 4 elements.

Note that an orbit of a permutation group is non trivial if its length is greater than 1. The groups described below are examples of permutation groups with bounded movement equal to m which have exactly $\frac{1}{2}(3 m-1)+\frac{1}{p}$ nontrivial orbits.

2 Examples and Preliminaries

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle
representations has t nontrivial cycles of lengths l_{1}, \ldots, l_{t}, say. We might represent g as
$g=\left(a_{1} a_{2} \ldots a_{l_{1}}\right)\left(b_{1} b_{2} \ldots b_{l_{2}}\right) \ldots\left(z_{1} z_{2} \ldots z_{l_{t}}\right)$. Let $\Gamma(g)$ denote a subset of Ω consisting $\left\lfloor l_{i} / 2\right\rfloor$ points from the i th cycle, for each i , chosen in such a way that $\Gamma(g)^{g} \cap \Gamma(g)$ $=\emptyset$. For example, we could choose
$\Gamma(g)=\left\{a_{2}, a_{4}, \ldots, a_{k_{1}}, b_{2}, b_{4}, \ldots, b_{k_{2}}, \ldots, z_{2}, z_{4}, \ldots, z_{k_{t}}\right\}$, where $k_{i}=l_{i}-1$ if l_{i} is odd and $k_{i}=l_{i}$ if l_{i} is even. Note that $\Gamma(g)$ is not uniquency determined as it depends on the way each cycle is written. For any set $\Gamma(g)$ consists of every point of very cycle of g. From the definition of $\Gamma(g)$ we see that

$$
\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=|\Gamma(g)|=\sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor .
$$

The next lemma shows that this quantity is an upper bound for $\left|\Gamma^{g} \backslash \Gamma\right|$ for an arbitrary subset Γ of Ω.
Lemma 2.1. [5, Lemma 2.1]. Let G be a permutation group on a set Ω and
suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G,\left|\Gamma^{g} \backslash \Gamma\right| \leq \sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor$, where l_{i} is the length of the i th cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma=\Gamma(g)$ defined above .
Now we will show that there certainly is an infinite family of 3 -groups for which the maximum bound obtained in Theorem 1.1 holds .
Example 2.2 . Let d be a positive integer $\Omega=\Omega_{1} \cup \Omega_{2}$ be a set of size 7 , such that $\Omega_{1}=\{1,2,3\}$ and $\Omega_{2}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Moreover, suppose that $Z_{2}^{2} \cong\left\langle\left(1^{\prime} 2\right)\left(3^{\prime} 4^{\prime}\right),\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\right\rangle$ and $Z_{3} \cong\left\langle(123)\left(1^{\prime} 2^{\prime} 3^{\prime}\right)\right\rangle$. Then the semi-direct product $G=Z_{2}^{2} Z_{3}$ with normal subgroup $G=Z_{2}^{2}$ is a permutation group on a set Ω with 2 -orbits which movement 2 , since each non-identity element of G has two cycle of length 2 or two cycle of length 3 .
Example 2.3 .Let $Z_{2}^{2}=\langle x\rangle$ and $Z_{3}=\langle y\rangle$, and write $G=\left\{x^{i} y^{j} z \mid z \in Z_{3}^{d}\right\}$. Note that y lies in G. If x lies in G, then $G=\left(Z_{3} . Z_{2}^{2}\right) \times Z_{3}$. If $x \notin G, x^{2}$ lies in G. We then consider a subgroup $T=\left\{z \in Z_{3}^{d} \mid z \in G\right\}$ and a subset $S=\left\{z \in Z_{3}^{d} \mid y z \in G\right\}$ of Z_{3}^{d}. Let $\Omega_{1}, \ldots, \Omega_{d}, d G-$ orbits and $\Delta=\bigcup_{i=1}^{d} \Omega_{i}$, $\Delta^{\prime}=\Omega \backslash \Delta$ and K the pointwise stabilizer on Δ. Since the permutation group induced by G / K on is an elementary abelian 3 -group Z_{3}^{d}, we have $T \cap S=$ and $T \cup S=Z_{3}^{d}$. If z^{\prime} and $z^{\prime \prime}$ lie in S, then $y z^{\prime} y z^{\prime \prime} \in G$ and so does $z^{\prime} z^{\prime \prime} \in G$. This means $S \subset \alpha T$ for some $\alpha \in Z_{3}^{d} \backslash T$, and $Z_{3}^{d}=T \cup \alpha T$. Hence $G=\left\{x^{i} y^{3 j+1} \alpha t \mid t \in T\right\} \cup\left\{x^{i} y^{3 j} t \mid t \in T\right\}=\left\{x^{i}(y \alpha)^{j} t \mid t \in T\right\}$. Let $H=\left\{x^{i}(y \alpha)^{j}\right\}$. Then $T \cap H=\{1\}$ and $H T=G$. Since T and H are normal subgroups of G, we have $G=H \times T$. Since $H=\left\{x^{i}(y \alpha)^{j}\right\} \simeq Z_{3} . Z_{2}^{2}$ and $T \simeq Z_{3}^{(d-1)}$, we have $G \simeq\left(Z_{3} \cdot Z_{2}^{2}\right) \times Z_{3}^{d}$. This is complete the proof of Theorem 1.1.
Corrolary For every $m>2$, the theorem of this paper has answers .

3 Proof of Theorem 1.2.

In this section we prove Theorem 1.2 , we show first that a minimal counterexample to Theorem 1.2 , must be a nonabelian simple group acting primitively on Ω. If a group G has bounded movement equal to m for convenience we shall say that G satisfies $B M(m)$.
3.1.Proposition : Suppose that Theorem 1.2, is false and let m be the least integer for which Theorem 1.2 false. Further let G be a counterexample to Theorem 1.2, with $|G|$ minimal. Then G is a nonabelian simple group
acting primitively on Ω.
Proof : Since G is a counterexample to Theorem 1.2 with $|G|$ minimal, it follows that G is not a 2 -group,G is intransitive on Ω, G satisfies $\operatorname{BM}(\mathrm{m})$, and $|\Omega|=3 m+1$. The proof proceeds in five steps.

Let $\Omega_{1}, \ldots, \Omega_{t}$ be t orbits of G of lengths n_{1}, \ldots, n_{t}. Choose $\alpha_{i} \in \Omega$ and let $H_{i}:=G_{\alpha_{i}}$, so that $\left|G: H_{i}\right|=n_{i}$. For $g \in G$, let $\Gamma(g)=\left\{\alpha_{i} \mid \alpha_{i}^{g} \neq \alpha_{i}\right\}$ be every second point of every cycle of g and let $\gamma(g):=|\Gamma(g)|$. Since $\Gamma(g) \cap \Gamma(g)^{g}=\emptyset$ it follows that $\gamma(g) \leq m$ for all $g \in G$. Let $\bar{\Omega}:=\Omega_{1} \cup \ldots \cup \Omega_{t}$, and let \bar{G} and $\bar{H}_{1}, \ldots, \bar{H}_{t}$ denote the finite permutation groups on $\bar{\Omega}$ induced by G and H_{1}, \ldots, H_{t} respectively. Then $n_{i}=\left|\bar{G}_{1}: \bar{H}_{i}\right|$.

For $g \in G$, let $\bar{g} \in \bar{G}$ denote the permutation of $\bar{\Omega}$ induced by g. Then as $\gamma\left(1_{G}\right)=0$, we have $\sum_{\bar{g} \in \bar{G}} \gamma(g)<m|\bar{G}|$.
Now, Counting the pairs (\bar{g}, i) such that $\bar{g} \in \bar{G}$ and $\alpha_{i}^{g} \neq \alpha_{i}$ gives
$\sum_{\bar{g} \in \bar{G}} \gamma(g)=\sum_{i}\left|\left\{\bar{g} \in \bar{G} \mid \alpha_{i}^{g} \neq \alpha_{i}\right\}\right|=\sum_{i}\left|\left\{\bar{g} \in \bar{G} \mid g \notin H_{i}\right\}\right|=\sum_{i}\left(|\bar{G}|-\left|\bar{H}_{i}\right|\right)=|\bar{G}| \sum_{i}\left(1-\frac{1}{n_{i}}\right)$.
It follows that $\sum_{i}\left(1-\frac{1}{n_{i}}\right)<m$. Since $n_{i} \geq 3, p$ for each i, it follows that $\sum_{i}\left(1-\frac{1}{n_{i}}\right) \geq \frac{p-1}{p}+\frac{2}{3}(t-1)$ and hence $\frac{p-1}{p}+\frac{2}{3}(t-1)<m$, that is, $t \leq \frac{1}{2}(3 m-1)+\frac{1}{p}$.

Consequently G has at most $\frac{1}{2}(3 m-1)+\frac{1}{p}$ orbits in Ω. Now Let m be a positive integer greater than 1 . Suppose that $G \leq \operatorname{Sym}(\Omega)$ with orbits $, \Omega_{2}, \ldots, \Omega_{t}$, where $t=\frac{1}{2}(3 m-1)+\frac{1}{p}$. Suppose further that $\Gamma \subseteq \Omega$ has move $(\Gamma)=m$ and that cuts across each of the G-orbits Ω_{i}. For each i set $n_{i}=\left|\Omega_{i}\right|$ and $\Gamma_{i}=\Gamma \cap \Omega_{i}$. Note that $0<\left|\Gamma_{i}\right|<n_{i}$.

Claim 3.1 If Theorem 2.3 holds for the special case in which $\left|\Gamma_{i}\right|=1$ for $i=1, \ldots, \frac{1}{2}(3 m-1)+\frac{1}{p}$, then it holds in general .
Proof :Suppose that Theorem 2.3 holds for the case where each $\left|\Gamma_{i}\right|=1$. For $i=1, \ldots, t$, define $\sum_{i}:=\left\{\Gamma_{i}^{g} \mid g \in G\right\}$, and note that $\left|\sum_{i}\right| \geq 3$ since Γ cuts across Ω_{i}. Set $\Sigma=\cup_{i \geq 1} \sum_{i}$. Then G induces a natural action on Σ for which the G-orbits are $\Sigma_{1}, \ldots, \Sigma_{t}$. Let G^{Σ} denote the permutation group induced by G on Σ, and let K denote the kernel of this action.

We claim that the t-element subset $\Gamma_{\Sigma}=\left\{\Gamma_{1}, \ldots, \Gamma_{t}\right\} \subseteq \Sigma$ has movement equal to m relative to G^{Σ}, and that Γ_{Σ} cuts across each Γ^{Σ}-orbit Σ_{i}. For
each $g \in G,\left|\Gamma^{g}-\Gamma\right| \leq m$ and hence $\left|\Gamma_{\Sigma}^{g}-\Gamma_{\Sigma}\right| \leq m$. Thus move $\left(\Gamma_{\Sigma}\right) \leq m$. Also, Since $\left|\Sigma_{i}\right| \geq 3$ and $\Gamma_{\Sigma} \cap \Sigma_{i}$ Consists of the single element Γ_{i} of Σ_{i}, the set Γ_{Σ} cuts across each of the $\frac{1}{2}(3 m-1)+\frac{1}{p}$ orbits Σ_{i}. However, it follows that the number of G^{Σ} - orbits is at most $\frac{1}{2}\left(3 \operatorname{move}\left(\Gamma_{\Sigma}\right)-1\right)+\frac{1}{p}$, and hence move $\left(\Gamma_{\Sigma}\right)=m$.

Thus the hypotheses of theorem 2.3 hold for the subset $\Gamma_{\Sigma} \subseteq \Sigma$ relative to G^{Σ}, and Γ_{Σ} meets each G^{Σ}-orbit in exactly one point. By our assumption it follows that $t=\frac{1}{2}\left(p 3^{r}-1\right) \frac{1}{p}=\frac{1}{2}(3 m-1)+\frac{1}{p}$ for some $r>1$, and that $G^{\Sigma}=Z_{3}^{r}$ and each $\left|\Sigma_{i}\right|=3$. Further, the subgroups H_{i} of G fixing Γ_{i} setwise range over the $\frac{1}{2}\left(p 3^{r}-1\right)+\frac{1}{p}$ distinct subgroups which have index 3 in G and which contain K. In particular, for each i, H_{i} is normal in G and hence the H_{i}-orbits in Ω_{i} are blocks of imprimitivity for G, and their number is at most $|G: H|=3$. Since H_{i} fixes Γ_{i} setwise it follows that Γ_{i} is an H_{i}-orbit and $n_{i}=3\left|\Gamma_{i}\right|$.

Let $g \in G \backslash K$. Then in its action on Σ, g moves exactly m of the Γ_{i}. Since the Γ_{i} are blocks of imprimitivity for G, each Γ_{i}^{g} is equal to either Γ_{i} or $\Omega_{i}-\Gamma_{i}$. It follows that $\left|\Gamma^{g} \backslash G\right|$ is equal to the sum of the sizes of the m subsets Γ_{i} moved by g . However, since move $(\Gamma)=m$, each of these m subsets Γ_{i} must have size 1. Since for each i we may choose an element g which moves Γ_{i}, we deduce that each of the Γ_{i} has size 1 , and that K is the identify subgroup. It follows that theorem 2.3 hold for G. Thus the claim is proved.

From now on we may and shall assume that each $\left|\Gamma_{i}\right|=1$. Let $\Gamma_{i}=\left\{\Omega_{i}\right\}$. Further we may assume that $n_{1} \leq n_{2} \leq \ldots \leq n_{t}$. For $g \in G$ let $c(g)$ denote the number of integers I such that $\omega_{i}^{g}=\omega_{i}$. Note that since move $(\Gamma)=m$, we have $c(g)>t-m=\frac{1}{2}(3 m-1)+\frac{1}{p}-m=\frac{m-1}{2}+\frac{1}{p}$ and also $c\left(1_{G}\right)=t>\frac{m-1}{2}+\frac{1}{p}$.

Lemma 3.2. If one of the orbits of G has length equal to p, then the rest orbits of G has size 3 .

Proof : Let X denote the number of pairs (g, i) such that $g \in G$, $1 \leq i \leq t$, and $\omega_{i}^{g}=\omega_{i}$. Then $X=\sum_{g \in G} c(g)$, and by our observations, $X>|G| \cdot\left(\frac{m-1}{2}+\frac{1}{p}\right)$. On the other hand, for each i, the number of elements of G which fix ω_{i} is $\left|G_{\omega_{i}}\right|=\frac{|G|}{n_{i}}$, and hence $X=|G| \sum_{i=1}^{t} n_{i}^{-1}$ If all the $n_{i} \geq 3$, and one of n_{i} is equal to p, then $X \leq|G| \cdot\left(\frac{1}{p}+\frac{t-1}{3}\right)=|G|\left(\frac{1}{p}+\frac{3 m-1}{6}+\frac{1}{3 p}+\frac{1}{3}\right) \leq$
$|G| \cdot\left(\frac{m-1}{2}+\frac{1}{p}\right)$ (since $m \geq 3$) which is a contradiction. Hence $\mathrm{n}=3$.
A similar argument to this enables us to show that except one of n_{i} the rest of n_{i} is $n_{i}=3$, and hence that G is an $3-$ group.
Lemma 3.3. The group $G=Z_{p} \cdot Z_{3}^{r}$ for some $r \geq 2$. Moreover for each $n_{i}=3$, except one, the stabilizers $G_{\omega_{i}}(2 \leq i \leq t)$ are pair wise distinct subgroups of index 3 in G, and for each $g \neq 1, c(g)=\left(\frac{m-1}{2}+\frac{1}{p}\right)$.
Proof: By Lemma 3.2, except one of n_{i} the rest of n_{i} is $n_{i}=3$. Thus $H:=G_{\omega_{i}}$ is a subgroup of index 3 . This time we compute the number Y of pairs (g, i) such that $g \in G \backslash H, 2 \leq i \leq t$, and $\omega_{i}^{g}=\omega_{i}$. For each such $g, \omega_{1}^{g} \neq \omega_{1}$ and hence there are $c(g)$ of these pairs with first entry g. Thus $Y=\sum_{g \in G \backslash H} c(g) \geq|G \backslash H|\left(\frac{3(m-1}{2}+\frac{3}{p}\right)=|G|\left(\frac{m-1}{2}+\frac{1}{p}\right)$.

On the other hand, for each $i \geq 2$, the number of elements of G, which fix ω_{i} is $\left|G_{\omega_{i}} \backslash H\right|$. If $H=G_{\omega_{i}}$ then $\left|G_{\omega_{i}} \backslash H\right|=0$, while if $G_{\omega_{i}} \neq H$, then $\left|G_{\omega_{i}} \backslash H\right|=\frac{\left|G_{\omega_{i}}\right|}{3}=\frac{|G|}{3 n_{i}} \leq \frac{|G|}{9}$. Hence

$$
\begin{aligned}
& \left.Y=\sum_{i=2}^{t}\left|G_{\omega_{i}} \backslash H\right| \leq\right] \frac{|G|}{3} \sum_{i=2}^{t} \frac{1}{n_{i}} \leq \frac{|G|}{3}\left(\frac{1}{p}+\frac{t-1}{3}\right) \\
& =\frac{|G|}{3}\left(\frac{3+p(t-1)}{3 p}\right)<|G|\left(\frac{m-1}{2}+\frac{1}{p}\right)
\end{aligned}
$$

It follows that equality holds in both of the displayed approximations for Y. This means in particular that each $n_{i}=2$, Whence $G=Z_{p} . Z_{3}^{r}$ for some r. Further, for each $i \geq 3, G_{\omega_{i}} \neq H$ and so $r \geq 2$. Arguing in the same way with H replaced by $G_{\omega_{i}}$, for some $i \geq 2$, we see that $G_{\omega_{i}} \neq G_{\omega_{j}}$ if $j \neq i$, and also if $g \in G_{\omega_{i}}$ then $c(g)=\left(\frac{m-1}{2}+\frac{1}{p}\right)$. Thus the stabilizers $G_{\omega_{i}}(1 \leq i \leq t)$ are pairwise distinct, and if $g \leq 1$ then $c(g)=\left(\frac{m-1}{2}+\frac{1}{p}\right)$. Finally we determine m.
Lemma 3.4.. $m=3^{r-2}$
Proof: We use the information in lemma3.3 to determine precise the quantity $X=\sum_{g \in G} c(g): X=t+(|G|-1) \cdot\left(\frac{m-1}{2}+\frac{1}{p}\right)=\frac{1}{2}(3 m-1)+\frac{1}{p}+\left(p \cdot 3^{r-1}-\right.$ 1) $\left(\frac{m-1}{2}+\frac{1}{p}\right)$. On the other hand, from the proof of lemma 2.1,

$$
X=|G| \sum_{i=1}^{t} n_{i}^{-1}=|G| \cdot\left(\frac{1}{p}+\frac{t-1)}{3}\right)=p \cdot 3^{r-1} \cdot\left(\frac{1}{p}+\frac{3 m-1}{6}+\frac{1}{3 p}-\frac{1}{3}\right) .
$$

Thus implies that $m=3^{r-2}$.
The proof of theorem 2.3 now follows from lemmas 3.2-3.4.

References

[1] C.E.Praeger,On permutation groups with bounded movement,J.Algebra ,144(1991),436-442.
[2] C.E.Praeger, The separation theorem for group actions, in "ordered Groups and Infinite Groups" (W.charles Holland, Ed.), Kluwer Academic, Dordrecht/ Boston/ Lond, 1995.
[3] A.Hassani,M.Khayaty,E.I.Khukhro and C.E.Praeger, Transitive permutation groups with bounded movement having maximum degree.J. Algebra,214(1999),317-337.
[4] A.Gardiner,C.E.Praeger,Transitive permutation groups with bounded movement,J.Algebra 168(1994)798-803.
[5] A.Mann,C.E.Praeger,ransitive permutation groups of minimal movement,J.Algebra 181(1996)903-911.
[6] H.Wielandt,Finite Permutation Groups,Academic Press,NewYork,1968.
[7] P.S.Kim, Y.Kim,Certain groups with bounded movement having the maximal number of orbits,J.Algebra 252(2002)74-83.
[8] L.Brailovsky, Structure of quasi-invariant sets, Arch.Math.,59 (1992),322326.
[9] L.Brailovsky, D.Pasechnix , C.E.Praeger, Subsets close to invarianr subset of quasi-invariant subsets for group actions „Proc.Amer. Math.Soc. ,123(1995),2283-2295.
[10] J.R.Cho, P.S.Kim, and C.E.Praeger, The maximal number of orbits of a permutation Group with Bounded Movement, J.Algebra,214 (1999),625630.
[11] P.M.Neumann, The structure of finitary Permutation groups, Arch. Math. (Basel) 27(1976),3-17.
[12] B.H.Neumann, Groups covered by permutable subsets, J. London Math soc., 29(1954), 236-248.
[13] P.M.Neumann, C.E.Praeger, On the Movement of permutation Group, J.Algebra, 214, (1999)631-635.

