A Solution Algorithm for Interval Transportation Problems via Time-Cost Tradeoff
DOI:
https://doi.org/10.24297/jam.v14i2.7417Keywords:
Time-cost tradeoff, Transportation problem, Interval linear programming, Decision making.Abstract
In this paper, an algorithm for solving interval time-cost tradeoff transportation problemsis presented. In this problem, all the demands are defined as intervalto determine more realistic duration and cost. Mathematical methods can be used to convert the time-cost tradeoff problems to linear programming, integer programming, dynamic programming, goal programming or multi-objective linear programming problems for determining the optimum duration and cost. Using this approach, the algorithm is developed converting interval time-cost tradeoff transportation problem to the linear programming problem by taking into consideration of decision maker (DM).
Downloads
References
Allahdadi, M., and Nehi, H. M. (2013). The optimal solution set of the interval linear programming problems. ptimization Letters, 7(8), 1893-1911.
Chao-Guang, J., Zhuo-Shang, J., Yan, L., Yuan-Min, Z., and Zhen-Dong, H. (2005). Research on the fully fuzzy time-cost trade-off based on genetic algorithms. Journal of Marine Science and Application, 4(3), 18-23.
Ghazanfari, M., Yousefli, A., Ameli, M. J., and Bozorgi-Amiri, A. (2009). A new approach to solve time'cost trade-off problem with fuzzy decision variables. The International Journal of Advanced Manufacturing Technology, 42(3-4), 408-414.
Hladik, M. (2009). Optimal value range in interval linear programming. Fuzzy Optimization and Decision Making, 8(3), 283-294.
Leu, S. S., Chen, A. T., and Yang, C. H. (2001). A GA-based fuzzy optimal model for construction time'cost trade-off. International Journal of Project Management, 19(1), 47-58.
Luo, J., and Li, W. (2013). Strong optimal solutions of interval linear programming.Linear Algebra and its Applications, 439(8), 2479-2493.
Prasad, V. R., Nair, K. P. K., and Aneja, Y. P. (1993). A generalized time'cost trade-off transportation problem. Journal of the Operational Research Society, 44(12), 1243-1248.
Sengupta, A., and Pal, T. K. (2009). Fuzzy preference ordering of interval numbers in decision problems (Vol. 238, pp. xii+-165). Berlin: Springer.
Tanaka, H., Ukuda, T. andAsal, K. (1984). On fuzzy mathematical programming, Journal of Cybernetics, 3, 37-46.
Wu, H. C. (2008). On interval-valued nonlinear programming problems. Journal of Mathematical Analysis and Applications, 338(1), 299-316.
Zimmerman, H. J. (1978). Fuzzy programming and Linear programming with several objective functions, Fuzzy sets and systems, 1, 45-55.
Downloads
Published
How to Cite
Issue
Section
License
All articles published in Journal of Advances in Linguistics are licensed under a Creative Commons Attribution 4.0 International License.