Inverse System in The Category of Intuitionistic Fuzzy Soft Modules

Authors

  • S. E. Abdullayev Baku State University
  • Sadi Bayramov Baku State University

DOI:

https://doi.org/10.24297/jam.v14i1.7123

Keywords:

Soft Set, Soft Module, Fuzzy Soft Module, Inverse System, Inverse Limit, Perivative Factor of Ä°nverse Limit.

Abstract

This paper begins with the basic concepts of soft module. Later, we introduce inverse system in the category of intutionistic fuzzy soft modules and prove that its limit exists in this category. Generally, limit of inverse system of exact sequences of intutionistic fuzzy soft modules is not exact. Then we define the notion  which is first derived functor of the inverse limit functor. Finally, using methods of homology algebra, we prove that the inverse system limit of exact sequence of intutionistic fuzzy soft modules is exact.

Downloads

Download data is not yet available.

Author Biographies

S. E. Abdullayev, Baku State University

Department of Algebra and Geometry, Baku State University, 23, Z.Khalilov str., AZ1148, Baku, Azerbaijan

 

Sadi Bayramov, Baku State University

Department of Algebra and Geometry,,Baku State University, 23, Z.Khalilov str., AZ1148, Baku, Azerbaijan

 

References

1. U. Acar, F. Koyuncu, and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458-3463.
2. H. Aktaş and N. Çagman, Soft sets and soft group, Inform. Sci. 177 (2007) 2726-2735.
3. K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Studies on Fuzziness and Soft Computing, 35, (1999) Physica-Verlag, Heidelberg.
4. S.A. Bayramov, Fuzzy and fuzzy soft structures in algebras, Lambert Academic Publishing, 2012.
5. S. Bayramov, C. Gunduz, M. Ibrahim Yazar, Inverse system of fuzzy soft modules. Annals of Fuzzy Mathematics and Informatics 4 (2012) 349-363.
6. S. Eilenberg and N. Steenrood, Foundations of algebraic topology, Princeton, 1952.
7. F. Feng, Y.B. Jun and X. Zhao, Soft semirings, Compute. Math. Appl. 56 (2008) 2621-2628.
8. M. Ghadiri and B.Davvaz, Direct system and direct limit of modules, Iran. J. Sci. Technol. Trans. A Sci 128(A2) (2004) 267-275.
9. C. Gunduz (Aras) and S. Bayramov, Fuzzy soft modules, Int. Math. Forum 6(11) (2011) 517-527.
10. C. Gunduz (Aras) and S. Bayramov, Inverse and direct system in category of fuzzy modules, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications 2(1) (2011) 11-25.
11. C. Gunduz (Aras), S.A. Bayramov, Intuitionistic fuzzy soft modules, Computers and Mathematics with Application, 62 (2011) 2480-2486.
12. C. Gunduz (Aras) and S. Bayramov, Inverse and direct system in category of fuzzy modules, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications 2(1) (2011) 11-25.
13. L. Jin-liang, Y. Rui-xia and Y. Bing-xue, Fuzzy soft sets and fuzzy soft groups, Chinese Control and Decision Conference (2008) 2626-2629.
14. S.R. Lopez-Permouth and D.S. Malik, on categories of fuzzy modules, Inform. Sci. 52 (1990) 211-220.
15. P.K. Maji, A.R. Roy and R. Bismas, an application of soft sets in a decision-making problem, Compute. Math. Appl. 44 (2002) 1077-1083.
16. P.K. Maji, A.R. Roy and R. Bismas, an application of soft sets in a decision-making problem, Compute. Math. Appl. 44 (2002) 1077-1083.
17. D. Molodtsov, Soft set theory-first results, Compute. Math. Appl. 37 (1999) 19-31.
18. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
19. A.R. Roy and P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Compute. Appl. Math. 203 (2007) 412-418.
20. Qiu-Mei Sun, Zi-Liong Zhang and Jing Liu, Soft sets and soft modules, Lecture Notes in Compute. Sci. 5009 (2008) 403-409.

Downloads

Published

2018-03-18

How to Cite

Abdullayev, S. E., & Bayramov, S. (2018). Inverse System in The Category of Intuitionistic Fuzzy Soft Modules. JOURNAL OF ADVANCES IN MATHEMATICS, 14(1), 7486–7502. https://doi.org/10.24297/jam.v14i1.7123